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Abstract. I review the current status of hadronic structure computations on the lattice. I describe 
the basic lattice techniques and difficulties and present some of the latest lattice results; in particular 
recent results of the RBC group using domain wall fermions are also discussed. 

Understanding the basic properties of matter requires the understanding of the nucleon 
structure. Quantum Chromodynamics (QCD) is the theory describing strong interactions 
and hence is responsible for the properties of the nuclear matter. Although QCD has 
been around for more than twenty years, its non-perturbative nature is an obstacle to the 
direct connection of low energy physics ta, quarks and gluons, the fundamental degrees 
of freedom of the theory. Unlike QED, non-perturbative techniques had to be developed 
in order to understand the QCD predictions at low energies. The lattice formulation of 
QCD is both a non-perturbative way to d'efine the theory and a very powerful tool in 
understanding its properties. 

Deep inelastic scattering of leptons on nucleons has been an important tool in un- 
derstanding the structure of hadrons. Over the last few decades experiments at SLAC, 
Fermilab, CERN, DESY, and more recently at RHIC and JLAE3, have measured the 
quark and gluon light cone distribution functions of the nucleon. These experiments 
have substantially advanced our knowledge of the properties of hadrons. However, we 
would also like to study how this observed rich phenomenology arises form first prin- 
ciples, Le. QCD. With todays advances in (computer technology, algorithms, and recent 
developments in lattice regularization of fermions, lattice calculations can complement 
the experimental effort and promote our understanding of the non-perturbative nature of 
QCD. 

The Lattice Formulation 

The continuum Euclidean path integral can be defined using the lattice regulator [l]. 
In order to preserve gauge invariance the lattice gauge fields are link variables 

Up(x) = e i.J;+fi dzA, (7) , 

where A, are the continuum gauge fields. The fermion fields live on the sites of the 
lattice. Naive discretization of the continuum fermionic action leads to the so-called 
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FIGURE 1. Deep inelastic scattering. 

fermion doubling problem. This problem can be avoided by either reinterpreting the 
additional light fermions as extra flavors (the Kogut-Susskind approach) or by introduc- 
ing an irrelevant dimension 5 operator that breaks chiral symmetry on the lattice and 
gives mass proportional to the inverse lattice cutoff to the fermion doublers (the Wilson 
approach). Recently, new lattice fermionic actions that both preserve chiral symmetry 
on the lattice and do not suffer from the fermion doubling problem have been intro- 
duced. Such fermionic actions are the domain wall fermions [2, 3, 4, 51, the overlap 
fermions [6], and the fixed point fermions [7, 8, 91. Having defined the lattice theory, 
correlation functions can be evaluated using a Monte-Carlo integration in Euclidean 
space. 

However, parton distribution functions are defined in the Minkowski space, and hence 
cannot be directly computed in lattice QCD. Using the operator product expansion we 
can relate moments of the structure functions to forward matrix elements of gauge 
invariant local operators (for a pedagogical review see [lo]). These matrix elements 
can then be computed using lattice QCD. 

In a deep inelastic process (see Fig. 1) the cross section 

lpvwpv -_--- d20 - 1 a2E' 
dadE' 2mN$ E 

where PV is the lepton tensor, Wpv is the hadronic tensor, q is the momentum transfer, 
mN is the nucleon mass. The initial and final energy and momentum of the lepton are 
(E, k) and (E', k') respectively. 

The hadronic tensor can be decomposed in the symmetric W{pv) and anti-symmetric 
w [PI pieces: 

The symmetric piece defines the unpolarized structure functions Fl and F2 (F3 also 
for neutrino scattering). 
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while the anti-symmetric defines the polarized structure functions g ,  and g2 

where p p  and sp are the nucleon momentum and spin vectors, v = q - p ,  s2 = -mi, 

At the leading twist in the operator product expansion the moments of the structure 
functions can be factorized at a scale p in hard perturbative contributions (the Wilson 
coefficients) and low energy matrix elements of local gauge invariant operators: 

x = Q2/2v  and Q2 = -q2. 

- e(') 1,n ( P ' ~  / Q 2  g ( P )  ) a!? (P)  I (6) 

where c!4),e!q) are the Wilson coefficients and v$)(p),a!f),d$)(p) are the non- 
perturbative matrix elements. At the leading twist v$)(p) and aLq) are related to the 
parton model distribution functions (Xn)q and 

z,n c,n 

In order to extract $1 ( p )  , a$), and d$) (p) we need to compute non-perturbatively 
the following matrix elements: 

1 
(p ,  4 @;2&l]h...pn] IP74 = ..,d,400 x [(scpy, - S p , P l T ) P ~  * * Ppa + - * * - t 'I 

(8) 

{} implies symmetrization and a anti-symmetrization of indices. The nucleon states 
Ip,s) are normalized so that (p,slp',s') = ( ; ! n ) 3 2 E ( p ) ~ ( p - p ' ) ~ ~ , s ,  and s2 = -mi. The 



operators 8 are 

where o"= 8 - 8 and 8, 5 are covariant derivatives acting on the right and the left 
respectively. 

In Drell-Yan processes the transversity distribution (x) 69 can be measured (for details 
see [ 1 1, 12, 131). The relevant matrix element is 

and the operators @Oq are 

Lattice matrix elements 

In order to calculate on the lattice the needed matrix elements we have to compute 
nucleon three point functions 

CFpt(At, 2) = r ( Y y P ( J p ( ~ , t ) a ( Z ) J ( Y ( ~ , O ) )  (12) 

and nucleon two point functions 

where f ( p ' , O )  and J(p',t) are creation and annihilation operators of states with the 
quantum numbers of the nucleon. For unpolarized matrix elements while for 
the polarized l7 = 9 i y 5 y k  (k # 4). The 9 factor is needed for projecting out the 
positive parity part of the baryon propagator i.e. the nucleon. For the proton 

(14) 

where C = y4 y2 the charge conjugation matrix, a is a spinor index and a, b, c are color 
indices. When t >> z >> 0 

= 

~~(2,t) = c e-iF*z&"b" [ua((x,t)~y~db(x,t)] ui(x,t) 
ji,a,b,c 



where U ( p , s )  is the nucleon spinor which satisfies the Dirac equation and 
(O(J,(p',t)(p,s) = G U a ( p , s ) .  From F2. 15 and Eq. 8 (or Eq. 10) the required 
matrix elements can be extracted from the ratio of three point functions over two point 
functions. In practice we would like to achieve the asymptotic behavior of Eq. 15 with as 
small as possible t and z. For that reason the interpolating operator J is tuned so that the 
overlap with the exited nucleon states woiuld be as small as possible. For more details 
on the technical aspects of the lattice calcu'lation the reader may refer to [14,15,16,17]. 

In order to reduce the computational cost of calculating the above correlation func- 
tions some times the so-called quenched approximation is used. In this approximation 
the quark loop contributions to the path integral are ignored. Quenching reduces the 
computational cost by several orders of magnitude, while for certain quantities it in- 
troduces a systematic error N In addition, lattice computations are typically per- 
formed with heavier quark masses than the physical up and down quarks. Hence we have 
to perform extrapolations to the chiral limit. If the quark masses are light enough, chiral 
perturbation theory [18,19,20] can be used to calculate the dependence of the matrix el- 
ements on the quark mass.3 Finally the lattice matrix elements have to be renormalized, 
typically to E, and extrapolated to the continuum limit. 

Renormalization 

The renormalized operators at scale p are obtained from the lattice operators calcu- 
lated at lattice spacing a from 

B y p )  = 2:(p;a)@a(a) (16) 

in the case of multiplicatively renormalized operators. In general, there is operator 
mixing and as a result the above relation becomes 

r 1 

where @j are a set of operators allowed by symmetries to mix, and dj is the dimension 
of each operator. It is evident that if mixing with lower dimensional operators occur, the 
mixing coefficients are'power divergent as we approach the continuum limit. Hence we 
have to compute these terms non-perturbatively in order to accurately renormalize the 
operators. Higher dimensional operators arfe typically ignored since their effects vanish 
in the continuum limit. In certain cases we: may want to compute these coefficients in 
order to remove part of the systematic error introduced by the finite cutoff. 

The mixing of lattice operators is more complicated than that of the continuum 
operators, since on the lattice we do not have all the continuum symmetries. In particular, 
O(4) rotational symmetry in Euclidean space is broken down to the hypercubic group 

Note also that there are quantities for which the quenched approximation introduces uncontrollable 

In the case of the quenched approximation the so-called quenched chiral perturbation theory is used. 
errors. 



H(4). As a result, an irreducible representation of O(4) is reducible under H(4) and 
hence mixing of operators that would not occur in the continuum can occur on the lattice. 
For a detailed analysis of the H(4) group representations see [21, 221 and references 
therein. In lattice calculations we have to select carefully the lattice operators so that 
mixing with lower dimensional operators does not occur and hence no power divergent 
coefficients in Eq. 17 are encountered. This turns out to be a significant constraint on 
how many moments can be practically computed on the lattice. 

Another symmetry that is broken on the lattice for Wilson fermions is chiral symme- 
try. This results in mixings with lower dimensional operators for the dn matrix elements. 
Fortunately, in this case we can use lattice fermions, such as domain wall or overlap and 
fixed point fermions, that respect chiral symmetry on the lattice. For Wilson fermions, 
the renormalization of dz has been done non-perturbatively as described in [MI. 

The renormalization constants for all the operators relevant to structure function cal- 
culations have.been computed perturbatively for Wilson fermions, improved and unim- 
proved [23,24,25]. Moreover, the RI-MOM scheme has been used to renormalize non- 
perturbatively both local [26] and derivative operators [27, 281. In the Schroedinger 
functional scheme (developed by the ALPHA collaboration), all local operator renor- 
malizations and the renormalization of v2 have been computed [29, 301. In addition, 
work is underway for computing the constants for flavor singlet operators [3 11. For do- 
main wall fermions, all local operators have been renormalized non-perturbatively [32] 
using the RI-MOM scheme, and also perturbatively [33]. 

LATTICE RESULTS 

In the last several years, the lattice community (QCDSFIUKQCD and LHP/SESAM col- 
laborations) has made a substantial effort to compute the first few moments of the nu- 
cleon structure functions. Apart fkom the constraints imposed by the renormalization of 
the operators mentioned above, the requirement of having nucleon states with non-zero 
momentum4 limits the number of moments we can compute. These are the first three 
moments of the unpolarized structure functions, the first two moments of the polarized 
structure functions, and the first two moments of the transversity. These computations 
have been performed both in quenched and in full QCD with improved and unimproved 
Wilson fermions [15,34,16, 171. 

The RBC group has recently begun quenched computations with domain wall 
fermions [35]. Our current results are restricted only to those matrix elements that can 
be computed with zero momentum nucleon states. We use the DBW2 gauge action 
which is known to improve the domain wall fermion cpliral properties [36,37]. We have 
416 lattices of size 163 x 32 at p = 0.870 with lattice spacing a-1 = 1.3GeV7 providing 
us with a physical volume (- (2 .4f~z)~)  large enough to reduce finite size effects known 
to affect some nucleon matrix elements, such as gA [38, 391. Using fifth dimension 
length Ls = 16 we achieve a residual mass mres N O.8MeV [36, 371. The input quark 
masses ranged from 0.02 to 0.10, providing pion masses ranging from 39OMeV to 
850MeV. Further technical details of our calculation can be found in [35]. 

operators with more than one derivative need non-zero momentum nucleon states see Eq. 8 and Eq. 10 



c 

P 

0.8 

0.4 
h e 0.3 

0.2 

0. I 

0 down 1, , O , ; ,  , ;, , ,", , , f, , ,; 4 0.30 

a 

fi 0.25 
V 

0 

0.20 

5 

0.0 0.2 0.4 0.6 0.a 0.0 0.2 0.4 0.6 0.8 
rn: dev' mme dev' 

FIGURE 2. Quark density (x) vs. the pion mass squared. [left] The connected up (octagons) and down 
(diamonds) quark contributions. [right] The flavor non-singlet ( x ) ~ - ~ .  

Unpolarized Stioucture Functions 

The first three moments of the unpolarized structure functions have been computed 
by QCDSF in the quenched approximation. The needed chiral and continuum extrapo- 
lations have also been performed. A summary of recent results can be found in [40]. In 
comparison with M R S  phenomenological results, the lattice results are typically higher. 
Also, v3 is smaller than v4, while v3 > v4 is phenomenologically expected. The same 
computations have been performed by LHI?/SESAM in full QCD [17]. Their results in- 
dicate that dynamical fermions have only a small effect on the matrix elements they 
studied. 

It has been argued that the main reason for such discrepancies is the fact that lattice 
computations are performed at rather heavy quark masses and then extrapolated linearly 
to the chiral limit [41, 42, 431. For that reason, we need computations at much lighter 
quark masses in order to see whether there is a disagreement with phenomenological 
expectations. In quenched QCD, a study with very light quark masses has been done [a] 
indicating that the linear behavior persists clown to 3OOMeV pion masses. 

In Fig. 2 we present our results for the quark density distribution ( x ) ~  (v2). We plot the 
unrenormalized result for ( x ) ~ ,  ( x ) ~  and the flavor non-singlet ( x ) ~ - ~ .  Down to 38OMeV 
pion mass no significant curvature within our statistical errors can be seen? The ratio 
(x) , / (x) ,  is 2.41(4), linearly extrapolated to the chiral limit, is in agreement with the 
quenched Wilson fermion results [15,17]. 

Polarized Structure Functions 

The nucleon axial charge gA is related to the first moment of the polarized structure 
function gl. The current experimental value for gA/gv measured from neutron beta 
decays is 1.2670(35) [45]. Lattice calculations, quenched and dynamical, have been 
underestimating this quantity typically by 10% to 20% [46, 15,47, 16, 17,401. 

One of the systematic errors believed to affect these calculations is the finite volume. 
In order to study this effect we performed two calculations. One with spatial volume 
2.43 f m3 and another with spatial volume 1 f m3. Our results are shown in Fig. 3[right]. 
Between these two volumes it'is clear that there is a finite volume effect of about 20% at 

In [36] we had an indication of some curvature but this effect went away as we doubled the statistics. 
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FIGURE 3. Helicity (1) vs. the pion mass squared. [left] The connected up (octagons) and down 
(diamonds) quark contributions. [right] The nucleon axial charge gA i.e. flavor non-singlet ( l)Au-w 
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FIGURE 4. Helicity ( x ) ~  vs. the pion mass squared. [left] The connected up (octagons) and down 
(diamonds) quark contributions. [right] The flavor non-singlet ( x ) & - ~ .  

the chiral limit. In addition, the linearly extrapolated to the chiral limit value for gA/gv 
is 1.21(2). For a detailed analysis of this computation see [39]. Note that for domain 
wall fermions gA/gv  does not require renormalization, since the finite renormalization 
constants of the axial and the vector currents ZA, & are equal [32,48]. In Fig. 3[left] we 
present the up and down quark contributions of ( l)Aq for the proton renormalized using 
ZA = .77759(45) [37]. In Fig. 4 we present our unrenormalized data for (x)~, .  The ratio 
( X ) ~ ~ / ( X ) ~  linearly extrapolated to the chiral limit is roughly -4, consistent with other 
lattice results [16,17]. The lowest moment of the transversity ( l)sq is also measured. In 
Fig. 5 we plot the unrenormalized contributions for both the up and down quark, and the 
flavor non-singlet combination (1) Again the quark mass dependence is very mild 
and there is no sign of a chiral log behavior. The ratio (l)su/( l)6d linearly extrapolated 
to the chiral limit is also roughly -4. 

For computing moments of g2 we need to calculate the twist 3 matrix elements dn. 
We computed the d, matrix element which contributes to the first moment of g2. If 
chiral symmetry is broken the operator @]q = $qy5 [y3 D4 - y4 D3 q which is used to 
compute d, mixes with the lower dimensional operator 6'zq = ljy5034q. Hence in Wilson 
fermion calculations a non perturbative subtraction has to be performed. This has been 
done for d2 by QCDSF [16, 401. With domain wall fermions this kind of mixing is 
proportional to the residual mass (N m,,/a), which in our case is negligible. Thus we 
expect that a straightforward computation of d, with domain wall fermions provides 
directly the physically interesting result. In Fig. 6 we present our unrenormalized results 

" I  * 
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FIGURE 5. Transversity ( 1)6q vs. the pion mass squared. [left] The connected up (octagons) and down 
(diamonds) quark contributions. [right] The flavor non-singlet ( 1)6u-6d. 
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FIGURE 6. The-connected dl matrix element vs. quark mass for the up (octagons) and down (dia- 
monds) quarks. The up (fancy squares) and down (fancy diamonds) quark for Wilson fermions [ 171. 

for d ,  as a function of the quark mass. For comparison we also plot the unsubtracted 
quenched Wilson results for p = 6.0 from 1:17]. The fact that our result almost vanishes 
at the chiral limit is an indication that the power divergent mixing is absent for domain 
wall fermions. The behavior we find for the d, matrix element is consistent with that of 
the subtracted d2 computed by QCDSF [16,40] with Wilson fermions. 

CONCLUSIONS 

In conclusion, lattice computations can pliay an important role in understanding the 
hadronic structure and the fundamental properties of QCD. Although some difficulties 
still exist, several significant steps have been made. Advances in computer technology 
are expected to play a significant role in pushing these computations closer to the chiral 
limit and in including dynamical fermions. :RBC has already begun preliminary dynam- 
ical domain wall fermion computations [49] which we expect to be pushed forward with 
the arrival of QCD0C.In the near future, we also expect to complete the non-perturbative 
renormalization of the relevant derivative operators in quenched QCD. 
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