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Abstract. We present a calculation for single-inclusive large-pT pion production in longitudinally 
polarized p p  collisions in next-to-leading order QCD. The corresponding double-spin asymmetry 
AtL for this process will soon be used at BNL-RHIC to measure Ag. 

THEORETICAL FRAMEWORK 

Very inelastic p p  collisions with longitudinally polarized beams at the BNL-RHIC will 
open up unequaled possibilities to measure the so far elusive polarized gluon density 
Ag. RHIC has the advantage of operating at high energies (a = 200 and 500 GeV), 
where the underlying theoretical framework, i.e., perturbative QCD, is expected to be 
under good control. In addition, it offers various different channels in which Ag can be 
studied, such as prompt-y, heavy flavor, jet or inclusive-hadron production [ 1 , 21. In this 
way, RHIC will provide the best source of information on Ag for a long time to come. 

The basic concept that underlies most of spin physics at RHlC is the factorization 
theorem. It states that large momentum-transfer reactions may be factorized at a scale 
,uF into long-distance pieces that contain the desired information on the spin structure of 
the nucleon in terms of its universal parton densities, such as Ag, and parts that are short- 
distance and describe the hard interactions of the partons. The latter can be evaluated 
using perturbative QCD. The factorization scale pF is not further specified by the theory 
but usually chosen to be of the order of the hard scale in the reaction. 

In the following, we consider the spin-dependent cross section 
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where the superscripts denote the helicities of the protons in the scattering, for the 
reaction p p  -+ nX, where the pion is at high transverse momentum p r ,  ensuring large 
momentum transfer. The statement of the factorization theorem is then 
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where the sum is over all contributing partonic channels a + b -+ c + X, with dA6$ 
the associated partonic cross section, defined in complete analogy with Eq. (1). Besides 



the factorization scale pF for the initial-state partons Af&, there is also a factorization 
scale pk for the absorption of long-distance effects into the parton-to-pion fragmentation 
functions 0,“. The renormalization scale pR in (2) is associated with the running of a,. 

It is planned for the coming RHIC run (early 2003) to attempt a first measurement of 
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for high-p, pion production. The main underlying idea here is that the spin asymmetry 
AEL is very sensitive to Ag through the contributions from polarized quark-gluon and 
gluon-gluon scatterings. In general, a leading-order (LO) estimate of (2) or (3) merely 
captures the main features, but does not usually provide a quantitative understanding. For 
instance, the dependence on the unphysical scales p F ,  pf;, and pR is expected to be much 
reduced when going to higher orders in the perturbative expansion. Hence, only with 
knowledge of the next-to-leading order (NLO) QCD corrections can one reliably extract 
information on the parton distribution functions from the reaction. A NLO calculation 
of AFL has been completed very recently [3], and here we briefly sketch the results; for 
details, see [3]. We note that the PHENIX collaboration has recently presented first, still 
preliminary, results for the unpolarized cross section for p p  -+ noX at fi = 200 GeV, 
which are well described by a NLO QCD calculation [4]. 

The partonic cross sections dA6& in (2) have to be summed over all final states 
(excluding c which fragments) and integrated over the entire phase space of X. The 
LO results, which have been known for a long time [5], are obtained from evaluating 
all tree-level 2 -+ 2 QCD scattering diagrams. At NLB, we have @‘(as) corrections to 
the LO reactions, and also additional new processes, giving rise to 16 different channels 
in total, like qq -+ q X ,  qg -+ gX,  etc. At intermediate stages the NLO calculation will 
necessarily show singularities that represent the long-distance sensitivity. In addition, 
for those processes that are already present at LO, real 2 --+ 3 and virtual one-loop 
2 -+ 2 contributions will individually have infrared (IR) singularities that only cancel 
in their sum. Virtual diagrams will also produce ultraviolet (UV) poles that need to be 
removed by the renormalization of the strong coupling constant at a scale pR. We choose 
n = 4 - 2~ dimensional regularization to make these singularities manifest. Subtractions 
of poles will generally be made in the MS scheme. We use the HVBM prescription [6] 
to describe polarizations of particles in n dimensions. 

At @‘(a:), virtual corrections, which we have calculated adopting two different meth- 
ods, only contribute through their interference with the Born diagrams. Firstly, one 
could make use of known MS-renormalized one-loop vertex and self-energy insertions 
as given in [7]. Only the UV-finite box diagrams have to be calculated from scratch. The 
second approach makes use of the fact that helicity amplitudes for all one-loop 2 -+ 2 
QCD scattering diagrams were presented in [8]. These results will not immediately yield 
the answer for the HVBM prescription but the transformation is straightforward. 

In the 2 -+ 3 contributions, the two unobserved partons need to be integrated over 
their entire phase space which we perform analytically. In this way the final answer is 
much more amenable to a numerical evaluation, giving stable results in a short time. 
This may become important when experimental data will become available, and one is 
aiming to extract Ag from them within a “global analysis” [9]. Phase space integrations 



are organized best in the rest frame of the two unobserved partons. Extensive partial 
fractioning of the matrix elements then always leads to a “master integral” which can 
be done analytically. Singularities when the invariant mass of the unobserved partons 
vanishes are made manifest with help of the usual “+”-distributions. 

All genuine IR singularities cancel in the sum of all contributions. However, the limit 
E + 0 still cannot be taken as a result of collinear divergencies. These remaining poles 
need to be factored into the bare parton distribution and fragmentation functions, de- 
pending on whether their origin was in the initial or final state. This standard procedure 
introduces the factorization scales pF and pk in Eq. (2). We note that we have simul- 
taneously computed also the NLO corrections for the unpolarized case, where we fully 
agree at an aizaZyticaZ ZeveZ with results available in the literature [lo]. This provides an 
extremely powerful check on the correctness of all our calculations. 

Finally, we note that the same NLO calculation was presented in [l I] based on MC 
phase space integration techniques. Such an approach has the advantage of being very 
flexible as it may be used for any IR-safe observable, with any experimental cut. How- 
ever, the numerical integrations are delicate and time-consuming. Early comparisons 
show very good agreement of the numerical results. 

NUMERICAL RESULTS 

For our numerical calculations we assume the same kinematic coverage as in the un- 
polarized PHENIX measurement mentioned above [4]: a = 200 GeV, pion transverse 
momenta in the range 2 5 pT 5 13 GeV, and pseudorapidities integrated over I q I 5 0.38. 
We also always take into account that the pion measurement is at present possible only 
over half the azimuthal angle. To calculate the NLOLO polarized cross section (2)  we 
use the spin-dependent GRSV parton densities (“GRSV-std”) and the pion fragmentation 
functions of [13]. To investigate the sensitivity ofA& to Ag, we also use a set, for which 
Ag is assumed to be particularly large (“GRSV-max”). For the NLO (LO) unpolarized 
cross section, we use the CTEQ5M (CTEQSL) [14] densities. 

Figure 1 shows our results for the unpolarized and polarized cross sections at NLO and 
LO, where we have chosen the scales pR = pF = p& = p T .  The lower part of the figure 
displays the “K-factor”, K = H(A)oNL0/d(A)oLo. One can see that in the unpolarized 
case the corrections are roughly constant and about 50% over the pT-region considered. 
In the polarized case, we find generally smaller corrections which become of similar 
size as those for the unpolarized case only at the high-pT end. The cross section for pT- 
values smaller than about 2 GeV is outside the domain of perturbative calculations as 
indicated by rapidly increasing NLO corrections and, therefore, is not considered here. 

Figure 2 shows the improvement in scale dependence of the spin-dependent cross 
section when going from LO to NLO. In each case the shaded bands indicate the 
uncertainties from varying the unphysical scales in the range pT/2  5 pR = pF = pF 5 
2pT. The solid lines are for the choice where all scales are set to p r .  One can see that 
the scale dependence indeed becomes much smaller at NLO. 

Results for A& are given in Fig. 3. We have again chosen all scales to be p T .  As 
expected from the larger K-factor for the unpolarized cross section shown in Fig. 1, the 
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FIGURE 1. Unpolarized and polarized no production cross sections in NLO (solid) and LO (dashed) at a = 200 GeV. The lower panel shows the K-factor in each case. Figure taken from [3]. 

asymmetry is somewhat smaller at NLO than at LO, showing that inclusion of NLO 
QCD corrections is rather important for the analysis of the data in terms of Ag. 

We also conclude from the figure that there are excellent prospects for determining 
Ag(x) from A& measurements at RHIC: the asymmetries found for the two different 
sets of polarized parton densities, which mainly differ in the gluon density, show marked 
differences, much larger than the expected statistical errors in the experiment, indicated 
in the figure. The latter may be estimated by the formula 6A&, = I/ ( P2 ,/=), where 
P is the polarization of one beam, 9 the integrated luminosity, and obin the unpolarized 

FIGURE 2. Scale dependence of the polarized cross section for no production at LO and NLO [3] in 
the range pT/2 5 pR = pF = & 5 2p,. We have rescaled the LO results by 0.1 to separate them better 
from the NLO ones. In each case the solid line corresponds to the choice where all scales are set to pT. 
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FIGURE 3. Spin asymmetry for no production in NLO (solid lines). The dashed line shows the 
asymmetry at LO for the GRSV “standard” set. The “error bars” indicate the expected statistical accuracy 
targeted for the upcoming run of RHIC (see text). Figure taken from [3]. 

cross section integrated over the p,-bin for which the error is to be determined. We have 
used very moderate values P = 0.4 and 22’ = 7/pb, which are targets for the coming run. 

To conclude, we have presented the results of a largely analytical computation of 
the “LO partonic hard-scattering cross sections relevant for the spin asymmetry A& 
for high-p, pion production in longitudinally polarized hadron-hadron collisions. The 
asymmetry turns out to be a promising tool to provide first information on Ag even for 
the rather moderate luminosities tageted for the coming run with polarized protons at 
RHIC. 
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