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Abstract. The goal of these lectures, oriented towards the students just entering the field, is to 
provide an elementary introduction to QCD and the physics of nuclear interactions at high energies. 
We first introduce the general structure of QCD and discuss its main properties. Then we proceed to 
Glauber multiple scattering theory which lays the foundation for the theoretical treatment of nuclear 
interactions at high energies. We introduce the concept of Gribov’s inelastic shadowing, crucial for 
the understanding of quantum formation effects. We outline the problems facing Glauber approach 
at high energies, and discuss how asymptotic freedom of QCD helps to resolve them, introducing 
the concepts of parton saturation and color glass condensate. 

1. QUANTUM CHROMO-DYNAMICS - THE THEORY OF 
STRONG INTERACTIONS 

1.1. What is QCD? 

Strong interaction is, indeed the strongest force of nature. It is responsible for over 
80% of the baryon masses, and thus for most of the mass of everything on Earth. Strong 
interactions bind nucleons in nuclei which, being then dressed with electrons and bound 
into molecules by the much weaker electro-magnetic force, give rise to the variety of the 
physical world. 

Quantum Chromodynamics (QCD) is the theory of strong interactions. The funda- 
mental degrees of freedom of QCD, quarks and gluons, are already well established 
even though they cannot be observed as free particles, but only in color neutral bound 
states (confinement). Today, QCD has firmly occupied its place as part of the Standard 
Model. However, understanding the physical world does not only mean understanding its 
fundamental constituents; it means mostly understanding how these constituents interact 
and bring into existence the entire variety of physical objects composing the universe. In 
these lectures, we try to explain why high energy nuclear physics offers us unique tools 
to study QCD. 

1.1.1. m e  QCD Lagrangian 

So what is QCD? QCD emerges when the ndive quark model is combined with local 
SU(3) gauge invariance. Quark model classifies the large number of hadrons in terms 



of a few, more fundamental constituents. Baryons consist of three quarks, while mesons 
are made of a quark and an antiquark. For example, the proton is made of two up-quarks 
and one down quark, Ip) = luud), and the &-meson contains one up and one anti- 
down quark, I &) = I ud). However, the quark model in this nave form is not complete, 
because the Pauli exclusion principle, would not allow for a particle like the A isobar 
[A++) = luuu) with spin 3/2. The only way to construct a completely antisymmetric 
wavefunction for the A++ is to postulate an additional quantum number, which may 
be called “co~o~”. Quarks can then exist in three different color states; one may choose 
calling them red, green and blue. Correspondingly, we can define a quark-state “vector” 1 

with three components, 

(1) 

The transition from quark model to QCD is made when one decides to treat color simi- 
larly to the electric charge in electrodynamics. As is well known, the entire structure of . 
electrodynamics emerges from the requirement of local gauge invariance, i.e: invariance 
with respect to the phase rotation of electron field, .xp( ia(x)) ,  bwhere the phase a de- 
pends on the space-time coordinate. .One can demand similar invkance for the quark 
fields, keeping in mind that while there is only one electric charge in QED, there are 
three colorcharges in QCD. 

To implement this program, let us require the free quark Lagrangian, 

to be invariant under rotations of the quark fields in color space, 

with j ,  k E (1 . . . 3 )  (we always sum over repeated indices). Since the theory we build 8 

in this way is invariant with respect to these “gauge” transformations, all physically 
meaningful quantities must be gauge invariant. 

In electrodynamics, there is only one electric charge, and gauge transformation in- 
volves a single phase factor, U = exp(ia(x)).  In QCD, we have three different colors, 
and U becomes a (complex valued) unitary 3 x 3 matrix, i s .  UtU = UU? = 1, with de- 
terminant Det .U = l. These matrices form the fundamental representation of the group 
SU(3)  where 3 is the number of colors, Nc = 3. The matrix U has N: 1 = 8 inde- 
pendent elements and can therefore be parameterized in terms of the 8 generators TG, 
a E (1 . . .8} of the fundamental representation of SU(3) ,  

By considering a transformation U that is infinitesimally close to the 1 element of the 
group, it is easy to see that the matrices Tu must be Hermitian (Tu = Tu?) and traceless 
(tr Tu = 0):The Tu’s do not commute; instead one defines the SU(3) structure constants 



fabc by the commutator 

These commutator terms have no analog in QED which 

1 
2 

trTaTb = - 6ab, 

is based on the abelian gauge 
group U(1). QCD is based on a non-abelian-gauge group SU(3) and is thus called a 
non-abelian gauge theory. 

The generators Tu are normalized to 

where 6ab is the Kronecker symbol. Useful information about the algebra of color 
matrices, and their explicit representations, can be found in many textbooks (see, e.g., 
l-11). 

Since U is x-dependent, the free quark Lagrangian (2) is not invariant under the 
transformation (3). In order to preserve gauge invariance, one has to introduce, following 
the familiar case of electrodynamics, the gauge (or “gluon”) field AP (x) and replace the 
derivative in (2) with the so-called covariant derivative, 

k j  

Note that the gauge field AP (x) = AgTG(x) as well as the covariant derivative are 3 x 3 
matrices in color space. Note also that Eq. (7) differs from the definition often given 
in textbooks, because we have absorbed the strong coupling constant in the field AP. 
With the replacement given by Eq. (7), all changes to the Lagrangian under gauge 
transformations cancel, provided AP transforms as 

k j  

U : AP(x) --+ U(x)AP(x)Ut(x)  +iU(x)dPUt(x). (8) 

(From now on, we will often not write the color indices explicitly.) 
The QCD Lagrangian then reads 

FIGURE 1. Due to the non-abelian nature of QCD, gluons carry color charge and can therefore interact 
with each others via these vertices. 



where the first term describes the dynamics of quarks and their couplings to gluons, 
while the second’term describes the dynamics of the gluon field. The strong coupling 
constant g is the QCD analog of the elementary electric charge e in QED. The gluon , 
field strength tensor is given by 

@V(x) f i [Dp,Dv] = dpAV(x)  - a”Ap(x) -i [Ap(x),A”(x)]. 

This can also be written in terms of the color components A!. of the gauge field, 

(10) : .  

For a more complete presentation, see [2] and modern textbooks like [ 1,3,4]. 
The crucial, as will become clear soon, difference between electrodynamics and QCD 

is the presence of the commutator on the zh.s. of Eq. (10). This commutator gives rise 
to the gluon-gluon interactions shown in Fig. 1 that make the QCD field equations non- - 
linear: the color fields do not simply add like in electrodynamics. These non-linearities 
give rise to rich and non-trivial dynamics of strong interactions. 

1.1.2. AsymptoticFreedom 1. 

Let us now turn to the discussion of the dynamical properties of QCD. To understand 
the $dynamics of a field theory, one necessarily has to understand how the coupling 
constant behaves as a function of distance. This behavior, in turn, is determined by the , 

response of the vacuum to the presence of external charge. The vacuum is the ground 
state of the theory; however, quantumvmechanics tells us that the “vacuum” is far from 
being empty - the uncertainty principle allows particle-antiparticle pairs to be present in 
the vacuum for a period time inversely proportional to their energy. In QED, the electron- 
positronqpairs have the effect of screening the electric charge, see Fig. 2. Thus, the 
electromagnetic coupling constant .increases toward shorter distances. The dependence 
of the charge on distance is given by 

which can be obtained by resumming (logarithmically divergent, and regularized at the 
distance ro) electron-positron loops dressing the virtual photon propagator. I 

The formula (12) has two surprising properties: first, at large distances T away from the 
charge which is localized at ro, T >> ro, where one can neglect unity in the denominator, 
the “dressed” charge e( r) becomes independent of the value of the t‘bare” charge e( r0) - 
it does not matter what the value of the charge at short distances is. Second, in the local 
limit r0 T, 0, if we require the bare charge e(ro) be finite, the effective charge vanishes 
at any finite distance-away from the bare charge! This is the celebrated Landau’s zero 
charge problem [SI: the screening of the charge in QED does not allow to reconcile 
the presence ~f~interactions with the local limit of the theory. This is a fundamental 
problem of QED, which shows that i) either it is not a truly fundamental theory, or ii) 



FIGURE 2. In QED, virtual electron-positronpairsfrom the vacuum screen the bare charge of the elec- 
tron. The larger the distance, the more pairs are present to screen the bare charge and the electromagnetic 
coupling decreases. Conversely, the coupling is larger when probed at short distances. 

Eq. (12), based on perturbation theory, in the strong coupling regime gets replaced by 
some other expression with a more acceptable behavior. The latter possibility is quite 
likely since at short distances the electric charge becomes very large and its interactions 
with electron-positron vacuum cannot be treated perturbatively. A solution of the zero 
charge problem, based on considering the rearrangement of the vacuum in the presence 
of “super-critical”, at short distances, charge was suggested by Gribov [6]. 

Fortunately, because of the smallness of the physical coupling ae,(r) = e2(r)/(4n) = 
1 / 1 3 7 ,  this fundamental problem of the theory manifests itself only at very short dis- 
tances - exp( - 3 / [ 8 a e m ] ) .  Such short distances will probably always remain beyond the 
reach of experiment, and one can safely apply QED as a truly effective theory. 

In QCD, as we are now going to discuss, the situation is qualitatively different, and 
corresponds to anti-screening -the charge is small at short distances and grows at larger 
distances. This property of the theory, discovered by Gross, Wilczek, and Politzer [7], is 
called asymptotic freedom. 

While .the derivation of the running coupling is conventionally performed by using 
field theoretical perturbation theory, it is instructive to see how these results can be 
illustrated by using the methods of condensed matter physics. Indeed, let us consider 
the vacuum as a continuous medium with a dielectric constant E .  The dielectric constant 
is linked to the magnetic permeability p and the speed of light c by the relation 

1 
E L L = - = = .  

C2 

Thus, a screening medium (E  > 1 )  will be diamagnetic (p  < l), and conversely a 
paramagnetic medium (p  > 1 )  will exhibit antiscreening which leads to asymptotic 
freedom. In order to calculate the running coupling constant, one has to calculate the 
magnetic permeability of the vacuum. We follow [SI in our discussion, where this has 



been done in a framework very similar to Landau's theory of the diamagnetic properties 
of a free electron gas. In QED one has 

So whygis the QCD vacuum paramagnetic while the QED vacuum is diamagnetic? The 
energy density of a medium in the presence of an external magnetic field 3 is given by 

where the magnetic susceptibility x is defined by the relation , . 

When electrons move in an external magnetic field, two competing effects determine the . ' 
sign of magnetic susceptibility: 

The electrons inl magnetic field move, along quantized orbits, so-called Landau 
levels. The current originating from this movement produces a magnetic field with I 

opposite direction to the external 'field. This is the'diamagnetic response, x < 0. 
The electron spins align along the direction of the external g-field, leading to a 
paramagnetic response 01 > 0). a I .  

In QED, the diamagnetic effect is stronger, so the vacuum is screening the bare charges. 
In QCD,. however, gluonsqcany color charge. Since they have a larger spin (spin 1) 
than quarks (or electrons), .the paramagnetic effect dominates and the vacuum is anti- 
screening. 

Let us explain this in more detail. Basing on the considerations given above, the 
energy density of the QCD vacuum in the presence of an external color-magnetic field 
can be calculated by using the standard formulas of quantum mechanics, see e.g. [SI, 
by summing over Landau levels and taking account of the fact that gluons and quarks 
give contributions of different sign. Note that a summation over all Landau levels would 
lead to an infinite result for the energy density. +In order to avoid*this divergence, one 
has to introduce a cutoff A with dimension of mass. Only field modes with wavelength 
A >, 1/A are$ taken into account. The upper limit for A is ,given by the. radius of the . 
largest Landau orbit; ro - l/m, which'is the only dimensionful scale in the problem; 
the summation thus is made over the wave lengths satisfying I 

(17) I 

(18)' . 

where Nf is the number of quark flavors, and Nc = 3 is the number of flavors. Comparing 
this with Eus. (15) and.(l6);one can read off the magnetic permeability of the OCD 



vacuum, 

The first term in the denominator (1 lNc) is the gluon contribution to the magnetic 
permeability. This term dominates over the quark contribution (2Nf) as long as the 
number of flavors Nf is less than 17 and is responsible for asymptotic freedom. 

The dielectric constant as a function of distance r is then given by 

The replacement -+ l / r  follows from the fact that E and p in Q. (20) should be 
calculated from the same field modes: the dielectric constant E( r) could be calculated by 
computing the vacuum energy in the presence of two static colored test particles located 
at a distance r from each other. In this case, the maximum wavelength of field modes, 
that can contribute is of order r so that 

1 r k A k - .  
A 

Combining Eqs. (1 7) and (21), we identify r = 1 / and find 
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FIGURE 3. The running coupling constant as(Q2) as afunction of momentum transfer Q2 determined 
from a variety ofpmcesses. The figure is from [lo], courtesy of S. Bethk. 



With as(rl)/a,(r23 = ~c~(r~)/~$%~(r~) oneifinds to lowest order in a, . 

Apparently, if rl < r2 then as(rl) < as(i2). The running of the coupling constant is. 
shown in Fig. 3, Q N l / r .  The intuitive derivation given above illustrates the original 
field-theoretical result of [7]. I 

At high momentum transfer, corresponding to short distances;the coupling constant 
thus #becomes small and one can apply ,perturbation theory, see Fig. 3. There is a va- , 

riety of processes that involve high momentum, scales, e.g. deep inelastic t scattering, 
Drell-Yan dilepton production, e+e--annihilation into hadrons, production ,of heavy 
quarks/quarkonia, high pT hadron production . . .. QCD correctly predicts the I Q2 de- 
pendence of these, so-called “hard? processes, which is a peat success of the theory. 

1.2. Challenges in QCD 

1.2. I ;  Con$nement 

While asymptotic freedom implies that the theory becomes simple and treatable at 
short distances, it also tells us that at large distances the coupling becomes very strong. 
In this regime we have no reason to believe in perturbation theory. In QED, as we have 
discussed above, the strong coupling regime starts at extremely short distances beyond 
the reach of current experiments - and this makes the ‘‘zero-charge~’ problem somewhat 
academic.Jn QCD, the entire physical World around us is defined by the properties o 
the theory in the strong coupling regime - and we have to constructtaccelerators to study 
it in the much more simple, “QED-like”, weak coupling limit. . 

We do not have to look far to find the striking differences between the properties 
of QCD at short and large distances: the elementary building blocks of QCD - the 
“fundamental”.fields appearing @ the Lagrangean (9), quarks and gluons, do not exist 
in the physical spectrum as asymptotic states. For some,, still unknown to us, reason, 
all physical states with finite energy appear to be color-singlet combinations of quarks 
and gluons, which are thus always “confined” at rather short distances on the order of 1 
fm. This prevents us, at least in principle,, from using well-developed formal S-matrix 
approaches based on analyticity and unitarity to describe quark and gluon interactions. 

The property of confinement can be explored by looking at the propagation of heavy 
quark-antiquark pair at a distance R propagating in time a distance T .  An object which 
describes the behavior of this system is the Wilson loop [ 111 

W(R, T )  = Tr [. exp [iLA;Tadxp]] , 

where A f  is the (gluon field; Ta is the generator of SU(3), and the‘contour C is chosen 
as a rectangle with side R in one of the space dimensions and lir: in the time direction. It 



can be shown that at large T the asymptotics of the Wilson loop is 

lim W(R, T )  = exp [-TV(R)] , (25) 

where V(R)  is the static potential acting between the heavy quarks. At large distances, 
this potential grows as 

where o - 1 GeV/fm is the string tension. We thus conclude that at large T and R the 
Wilson loop should behave as 

(27) 

T-t -  

V ( R )  = OR, (26) 

W(R,  T )  N- exp [-oTR] , 
The formula (27) is the celebrated “area law”, which signals confinement. 

It should be noted, however, that the introduction of dynamical quarks leads to the 
string break-up at large distances, and the potential V(R)  saturates at a constant. The 
presence of light dynamical quarks is most important in Gribov’s confinement scenario 
[6], in which the color charges at large distances behave similarly to the “supercriti- 
cal” charge in electrodynamics, polarizing the vacuum and producing copious quark- 
antiquark pairs which screen them. In this scenario, in the physical world with light 
quarks there is never a confining force acting on color charges at large distances, just 
quark-antiquark pair production (“soft confinement”). This may explain why the spec- 
tra of jets, for example, computed in perturbative QCD, appear to be consistent with 
experiment; this fact would be difficult to reconcile with the existence of strong con- 
fining forces. There exists a special situation, however, when the law (27) should be 
appropriate even in the presence of light quarks - the heavy quarkonium. The sizes of 
heavy quarkonia are quite small, and their masses are below the threshold to produce 
a pair of heavy mesons. This is why heavy quarkonia are especially useful probes of 
confinement. 

At high temperatures, the long-range interactions responsible for confinement be- 
come screened away - instead of the growing potential (26), we expect 

2 T  
V(R)  - -- g ( ) exp(-mDR>, (28) R 

where mD - gT is the Debye mass. Mathematically, this transition to the deconfined 
phase can again be studied by looking at the properties of the Wilson loop. At finite 
temperature, the theory is defined on a cylinder: Euclidean time z varies within 0 5 z 5 
p = 1 /T ,  and the gluon fields satisfy the periodic boundary conditions: 

Let us now consider the Wilson loop wrapped around this cylinder (the Polyakov loop), 
and choose a gauge where At  is time-independent: 

P(2) = Tr exp [igpA:(2)t)ta] ; (30) 

CT(2) =< P(j;>A?*(x’) > T .  (31) 

the correlation function of these objects can be defined as 



Again, it can be shown that this correlation function is related to the free energy, and 
thus static potential V(R) ,  of the heavy quark-antiquark pair. Assuming, as before, that 
the heavy quarks are separated by the spatial distance R = 121; one finds 

Again, if we define the limit value,L( T )  of the correlation function, . 

it would have to vanish in the confined phase in the absence of dynamical quarks, since 
V ( R )  tends to infinity in this case: L(T) = 0. In the deconfined phase, on the other hand, 
because of the screening V(R)  should4end to a corktant, and this implies a finite value 
L( T )  # 0. The correlation function of Polyakov loops therefore can be used as an order 
parameter of the deconfinement. The behavior of L( 2’) as a function of temperature has 
been measured on the lattice; one indeed observes a transition from the confined phase 
with L(T) = 0 to the deconfined phase with L(T) # 0 at some critical temperature Tc. 
In the presence of light quarks, as.we have already discussed above, the potential would 
tend to a constant even in the confined phase, and L(T)  ceases to be a rigorous order 
parameter. 

1.2.2. Chiral symmetry breaking 

The decades of experience with “soft pion” techniques and current algebra convinced 
physicists that the properties of the world with massless pions are quite close to the 
properties of our physical World. The existence of massless particles is always a mani- 
festation of. a symmetry of the theory - photons, for. example, appear as a consequence . 
of local gauge invariance of the electrodynamics. However, unlike photons, pions have 
zero spin and cannot be gauge bosons of any symmetry:.The other possibility is pro- 
vided by the’Goldstone theorem, which states that the appearance of massless modes 
in the spectrum can also reflect a spontaneously broken symmetry, i.e. the symmetry of 
the theory..which is broken in the ground state. Because of the great importance of this 
theorem, let us briefly sketch its proof. 

Supposesthatsthe Hamiltonian H of the theory is invariant under some symmetry 
generated by operators Qi,, so that 

[H, Qi] = 0. . (34) 

Spontaneous symmetry breaking in the ground state of theory implies that for some of 
the generators Qi 

Since Qi.commute with the Hamiltonian, this means that this new state Q,lO > has the. 
same energy :as the ground state. The vacuum is therefore degenerate, and in a rela- 
tivistically invariant theory thhisi implies the existence of massless particles - Goldstone 

(&IO,># 0. (35) ‘ 



bosons. A useful example of that is provided by the phonons in a crystal, where the con- 
tinuous translational symmetry of the QED Lagrangean is spontaneously broken by the 
existence of the fixed period of the crystal lattice. 

Even though all six quark flavors enter the Lagrangean, it is intuitively clear that at 
small scales Q << Mc,Mb,M,, heavy quarks should not have any influence on the dy- 
namics. In a rigorous way this statement is formulated in terms of decoupling theorems, 
which we will discuss in detail later. At the moment let us just assume that we are inter- 
ested in the low-energy behavior, and that only light quarks are relevant for that purpose. 
Then it makes sense to consider the approximate symmetry, which becomes exact when 
the quarks are massless. In fact, in this limit, the Lagrangean does not contain any terms 
which connect the right- and left-handed components of the quark fields: 

The Lagrangean of QCD (9) is therefore invariant under the independent transformations 
of right- and left-handed fields (“chiral rotations”). In the limit of massless quarks, QCD 
thus possesses an additional symmetry UL(Nf)  x UR(Nf)  with respect to the independent 
transformation of left- and right-handed quark fields qL = $( 1 f %)q: 

q L  vLqL; q R  vRqR; vL, vR E u(Nf) ;  ( 3 7 )  

this means that left- and right-handed quarks are not correlated. 
Even a brief look into the Particle Data tables, or simply in the mirror, can convince 

anyone that there is no symmetry between left and right in the physical World. One thus 
has to assume that the symmetry ( 3 7 )  is spontaneously broken in the vacuum. 

The presence of the “quark condensate” < ijq > in QCD vacuum signals spontaneous 
breakdown of this symmetry, since 

< qq >=< qLqR > + < q R q L  >, ( 3 8 )  

which means that left- and right-handed quarks and antiquarks can transform into 
each other. Quark condensate therefore can be used as an order parameter of chiral 
symmetry. Lattice calculations show that around the deconfinement phase transition, 
quark condensate dramatically decreases, signaling the onset of the chiral symmetry 
restoration. 

This spontaneous breaking of UL(3) x uR(3) chiral symmetry, by virtue of the Gold- 
stone theorem presented above, should give rise to 32 = 9 Goldstone particles. The flavor 
composition of the existing eight candidates for this role ( 3  pions, 4 kaons, and the q) 
suggests that the uA( 1) part of UL(3) x UR(3) = sUL(3) x sUR(3) x Uv( 1)  x UA( 1) does 
not exist. This constitutes the famous “UA( 1) problem”. 

1.2.3. The origin of mass 

There is yet another problem with the chiral limit in QCD. Indeed, as the quark masses 
are put to zero, the Lagrangian (9) does not contain a single dimensionful scale - the 



FIGURE 4. 
gluons interchanged in the final state is not shown. 

The triangle graph that leads to the U,( 1)-anomaly The corresponding graph with the two I ,  

only parameters are pure numbers Nc and N f .  The theory is thus apparently'invariant 
with respect to scale transformations, and the corresponding scale current is conserved 
a,s, = 0. However, the absence of a mass scale would imply that all physical states in . 
the theory should be massless! 

1.2.4. . Quantum anomalies 

Both apparent problems - the missing UA(l) symmetry and the origin of hadron 
masses - are related to quantum anomalies. A symmetry of a classical theory can be 
broken whenithat theory is quantized, due to the requirements of regularization and 
renormalization. This is called anomalous symmetry breaking. Regularization of the 
theory on the quantum level brings in a dimensionful parameter - remember the cutoff 
A of Eq. (17) we had to'impose on the-wavelength of quarks and gluons. 

Once the theory is quantized, wedready know that the coupling constant is scale 
dependent and therefore scale invariance is broken (note that the four-divergence of the 
scale current in field'theory is equal to the trace of the energy momentum tensor 0%). 
One finds 

where p ( g )  is the QCD p-function, which governs the behavior of the running coupling: 

note that as discussed in Section 1.1.1 we include couplingtg intthe definition oflthe 
gluon fields. As we already discussed, at small coupling g; the p function is negative, 
which means that the theory is asymptotically free. The leadingterm in the perturbative 
expansion is (compare with Eq. (23)) . .+ 

where Nc andtNf are the numbers of colors and flavors, respectively. 

momentum tensor,: 2112: = (hJO$]h). Apparently, light I hadron masses must .receive 

' 

Hadron masses are related to the forward matrix element of: trace of the QCD energy- . 



dominant contributions from the G2-term in Eq. (39). Note also that the flavor sum 
in Eq. (39) includes heavy flavors, too. This would lead to the unphysical picture 
that e.g. the proton mass is dominated by heavy quark masses. However, the heavy 
flavor contribution to the sum (39) is exactly canceled by a corresponding heavy flavor 
contribution to the p-function. 

Similar thing happens with the axial current, j ;  = ijypf‘4, generated by the UA( 1) 
group. The corresponding axial charge is not conserved because of the contribution of 
the triangle graph in Fig. 4, and the four-divergence of the axial current is given by [ 121 

- 
where Gpv = EpVKaGKa/2 is the dual field strength tensor. Since the gluonic part on 
the rhs of this equation is a surface term (a full divergence), there would be no physical 
effect, if the QCD vacuum were “empty”. 

1.2.5. Classical solutions 

However, it appears that due to non-trivial topology of the SU(3) gauge group, 
QCD equations of motion allow classical solutions even in the absence of external 
color source, i.e. in the vacuum. The well-known example of a classical solution is 
the instanton, corresponding to the mapping of a three-dimensional sphere S3 onto the 
SU(2) subgroup of color SU(3) (for reviews, see [13, 141). As a result, the ground state 
of classical Chromodynamics is not unique. There is an enumerable infinite number of 
gauge field configurations with different topologies (corresponding to different winding 
number in the S3 += SU( 2) mapping), and the ground state looks like a periodic potential, 
see Fig. 5.  

In a quantum theory, however, the system will not stay in one of the minima, like 
the classical system would. Instead, there will be tunneling processes between different 
minima. These tunneling processes, in Minkowski space, correspond to instantons. Since 
tunneling, in general, lowers the ground state energy of the system, one expects the QCD 
vacuum to have a complicated structure. 

Instantons, through the anomaly relation (42), lead to the explicit violation of the 
UA( 1) symmetry and thus solve the mystery of the missing ninth Goldstone boson - the 
17’. Physically, axial symmetry UA( 1) is broken because the tunneling processes between 
topologically different vacua are accompanied by the change in quark helicity - even in 
the vacuum, left-handed quarks periodically turn into right-handed and vice versa. 

1.2.6. Strong CP problem 

The vacuum structure shown in Fig. 5 immediately leads to a puzzle known as the 
strong CPprobZem: When one calculates the expectation value of an observable in the 
vacuum, one has to average over all topological sectors of the vacuum. This is equivalent 



A 0 
FIGURE 5. Topological structure of QCD vacuum. The minima correspond to classical ground states 
with topologically diflerent gaugeJield ConJigurations A(!). Also shown is an instanton trajectory interpo- . 
lating between the classical vacua A(ll andA(21: The third axis shows the Euclidean time z. From [14]; 
courtesy ofH. Forkel. 

to adding an additional term to the QCD-Lagrangian, 

(43) ” 

where 8 E [0,2nJ is a parameter of theltheory which’has to be determined from exper- 
iment. Since the &term in Fq. (43) is CP violating, a non-zero bvalue of 8 would have 
immediate phenomenological consequences, e.g. an electric dipole moment of the neu- 
tron. However, precision measurements of this dipole moment constrain 8 to 8 < 
Theifactthat 8 is so unnatural1y;small constitutes the strong CP problem. The most 
likely solution to this problem [15] implies the existence of a light pseudoscalar 
the mion. However, despite many efforts, axions remain unobserved in experiment 

1.2.7: I Phase structure 

As was repeatedly stated above, the most important problem facing us in the study 
of all aspects of QCD is understanding the structure of the vacuum, which, in a manner I 

does not at all behave ,as an empty space, but .as a physical entity with ,a 
complicated structure. As such, the vacuum can be excited, -altered and modified in 
physical processes [ 161. 

Collisions of heavy ions are the best way to create high energy density in a “macro- 
scopic” (on the scale of a single hadron) volume. It thus could be possible to create and 

: 



to study a new state of matter, the Quark-Gluon PZasrna(QGP), in which quarks and 
gluons are no longer confined in hadrons, but can propagate freely. The search for QGP 
is one of the main motivations for the heavy ion research. 

Lattice calculations predict that QCD at high temperatures undergoes phase transi- 
tions in which confinement property is lost and chiral symmetry is restored. The critical 
temperature for the chiral phase transition is similar (or maybe even equal) to the critical 
temperature for deconfinement. 

Heavy ion collisions at RHIC may also give us the possibility to study the 0 angle 
dependence of the QCD phase diagram. In a heavy ion collision, bubbles containing a 
metastable vacuum with 8 # 0 may be produced, and reveal themselves through their 
unusual decay pattern [17]. 

2. NUCLEAR INTERACTIONS AT HIGH ENERGIES 

2.1. Glauber-Gribov Theory 

It is intuitively clear that heavy ion collisions are governed by multiple scattering 
effects. As a short introduction to the basics of multiple scattering theory, we introduce 
here the eikonal approximation to high energy scattering processes and the Glauber 
multiple scattering theory [18]. We also discuss Gribov's inelastic corrections [19] to 
Glauber's theory. 

2.1.1. The Eibnal Approximation 

The eikonal approximation is the classical approximation to the angular momentum 
1. In partial wave expansion, Le. in an expansion in angular momentum eigenstates, the 
scattering amplitude f(s, t )  reads [9] 

where s and t are the usual Mandelstam variables (center-of-mass energy squared and 
invariant momentum transfer, respectively), p is the momentum of the projectile and P, 
are the Legendre functions, which depend on the cosine of the scattering angle 0. All 
information about the interaction is contained in the scattering phases al. 

High energy scattering is of course a process that is far from being spherically 
symmetric. Therefore, very large values of I will dominate the sum Eq. (44) and we 
can treat the angular momentum classically. Since the angular momentum is given by 
pb, one replaces the variable 1 by the impact parameter b, 

1 
p b  = 1 + -. 

2 (45) 

Note that b is now a continuous variable, so angular momentum is no longer quantized. 



At large 1 and for small scattering angles 8, the Legendre functions can be expressed 
to good approximation as 

where 4' = p' 2' is the momentum, transfer in the scattering process (t e -14'1) and 
191 = 12'1 for elastic scattering. At high energy, 4' lies in the impact parameter plane. We 
have used the relation 3 . 

cos($) = 4'4 (47) 
I +  1/2 (21 + 1) sin( 0/2) cos( $) = 2p sin( 0/2) - 

P 

to obtain the second equality in Eq. (46). ' 
Thus,. the scattering amplitude in eikonal approximation reads:.b;. 

where the phase shift of the projectile is related to the scattering phase 6l by. 

x(s7$)t= 26(s7 b). . 1 (49) 

In the case of scattering off a potential V(?), this phase shift is simply given by 

where v is the'velocity of the projectile: The scattering amplitude then reads:,..' . '  

The. total cross section can now be obtained from the forward scattering amplitude via 
the optical theorem, . 

. 

4n ' 

P 
otot = -Im f (s, t = 0) = 2 

For completeness, we also give the .expressions for the elastic and inelastic cross 
sections.,The elastic cross section is obtained by squaring the elastic scatteringamplitude 
and integrating over the solid angle, ,. 

With the approximation dQp, M d2p'/p'2, which 'assumes. that scattering takes place 
predominantly in forward direction, one obtains 

I 
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FIGURE 6. Scattering off a composite system. The impact parameter of the projectile is denoted by z, 
while the impactparameters of the scattering centers are denoted by 

Finally, the inelastic cross section is 

For potential scattering, the inelastic cross section, of course, vanishes because ~ ( b )  is 
real. In general, however, X(b) will have an imaginary part. 

The expressions Eqs. (52), (54) and (55) could have been obtained directly from the 
partial wave decomposition of the total, elastic and inelastic cross section, as well. The 
conditions under which the eikonal approximation is applicable are investigated in detail 
in [18]. 

2.1.2. Multiple Scattering Theory 

Based on the eikonal approximation, it is quite straightforward to develop a theory 
for scattering off a composite system. In this section, we explain the basic features 
of the multiple scattering theory developed by Glauber [18]. A much more detailed 
presentation of this subject can be found in [l8]. 

Assuming that the scatterings on different nucleons are independent, the phase shifts 
from each scattering simply add up, 

Here, is the impact parameter of the projectile and Zj,  j = 1 . .  .A are the impact 
parameters of the A nucleons in the nucleus, see Fig. 6. The amplitude for scattering 



off a nuclear target then can be written as, ' 5 .  

(58)' 

where If) .and li) are the final and initial state of the target, respectively. In the second 
step, we introduced the profile function f ig) ,  which is related to the single-scattering 
amplitude f( 3) by 

4 1 fib) = - / d2qe-ig*zf(g). . 
2mp 

(59). ' 

Thus, we have expressed the nuclear scattering amplitudesin terms of the amplitude for 
scattering off a single nucleon. 

In the case of a purely imaginary f(:), fig) is the probability of absorption of the 
projectile by a nucleon and the nuclear scattering amplitude, Eq. (58) has a simple prob- 
abilistic interpretation. Namely, 1 - q(i - 3') is the probability of not being absorbed 
by nucleon number j.'Taking the product over, all j E { 1 ./ . .A3 yields the probability of 
not being absorbed by any nucleon in the target. Finally, 1 - 
probability.that the projectile is absorbed by any of the nucleons. 

Also, if one in addition assumes that all nucleons in the target are identical, the nuclear 
cross section can be expressed in terms of the cross section for scattering on a single 
nucleon, 

[l - ~ ( 5  - 3')] is the . 

M 2 J d2b ( 1-exp (-dL?@))) ? (62) . .. 

where the nuclear thickness function TA('i;) is the integral over the nuclear density, 

The simple expression, Eq. (61), resums all multiple scattering terms. We stress that 
the probabilistic interpretation of Eq. (58) as well as Eqs. (61) and (62) only hold for a 
purely imaginary f( 3). 

The meaning of the nuclear scattering amplitude; EQ. (58), is further explained by 
expanding the probability of particle absorption by any of the nucleons*in powers of 
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FIGURE 7.  Illustration of the single and double scattering terms in Eq. (65). The coherent sum over 
all graphs leads to interferences that reduce the total cross section. 

The first two terms in this expansion are illustrated in Fig. 7 .  The first term in Eq. (65) is 
just the sum of single scattering amplitudes. However, different nucleons in the nucleus 
compete to interact with the projectile. This effect is contained in the second term in 
Eq. (65), which reduces the cross section. This reduction is an interference effect that 
appears because the amplitudes for scattering on different nucleons have to be added 
coherently. This destructive interference can be observed in experiment as shadowing in 
hadron-nucleus interactions (eclipse effect in deuterium). Note, however, that shadowing 
is not completely explained by Glauber theory, as will be explained in the following 
section. 

The easiest application of Glauber multiple scattering theory to nuclear systems is the 
calculation of the inelastic nucleus-nucleus (AB) cross section, which can be written as 

here, P,(b) is the probability that no interaction takes place, 

where the nuclear overlap function is given by 

(Obviously, 1 - P,(b) is then the probability of an inelastic interaction, and the meaning 
of Eq. (66) becomes very transparent.) As it is common, we have labeled the two nuclei 
by their atomic mass numbers A and B. 



Another application is the calculation of inclusive particle spectra. With the help 
of crossing symmetry, the ‘cross sectiongfor production of a particle of type a in an 
AB collision, AB --+ aX, can be calculated from the total cross section of the process 
M + X, where d is the antiparticle of a. According to so-called AGK cutting rules 
[21], the nuclear cross section for. this process is given by 6 .  

d30a d3 O& 
AB =TAB(5)E-. 

Ed2bd3p‘ , d3P 

Integration over impact parameter b yields. .. : 

(69) , 

and correspondingly the charged particle multiplicity would scale proportional to AB,$ j !. , 

(71) ‘ 

the meaning ,of which is obvious - if collisions are truly’ independent; the, resulting 
multiplicity should scale with the number of collisions, AB. 

However, the (relation (71) appears to be badly. violated in experiment. What went 
wrong? It appears that the disagreement between the result Eq. (71) and experimental 
data is due to the fact that there are important corrections to thetGlauber multiple 
scattering theory, which we neglected so far. These corrections are known as Gribov’s 
inelastic shadowing [19] and will be the subject of the next section. 

2.1.3;. Gribov’s “Inelastic Shadowing ” I 

The assumed independence of nucleon-nucleon collisions is violated by the diagrams 
of the type of Fig. 8,.where the projectile is excited into a state In) by the interaction. 
The diagram in Fig. 8 does not describe independent collisions, and at high.energies it 
will interfere with the double scattering graph in Fig. ,7. 

The excitation of an inelastic state in the scattering is accompanied by a longitudinal I 
momentum transfer 

: 

> 
2P 

APL = 

where Mf is the invariant mass of $he excited system and Mi is the invariant mass of 
the projectile in the initial state. The diagram in Fig. 8 is only. important if it can make 
a significant contribution to the forward scattering amplitude $9. p i s  requires that the 
longitudinal momentum transfer must be so small that the nucleus has a chance to remain 
intact, i.e.:f 
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FIGURE 8. If the projectile is a composite particle, it can be excited by the interaction. Therefore, this 
graph will interfere with the double scattering graph in Fig. 7. 

where RA is the nuclear radius. Apparently, this condition is fulfilled for sufficiently 
large values of the projectile momentum p in Eq. (72). Thus, as it was first found by 
Gribov in [19], Glauber theory receives important corrections at high energy. 

The condition, Eq. (73), which determines, whether Gribov's inelastic shadowing 
becomes relevant, leads us to the important quantum mechanical concept of formation 
time, or formation length. The formation time is the lifetime of the excitation In) in Fig. 8 
in the target rest frame and the formation length is the longitudinal distance over which 
the excited state In) lives. At high energy, of course, both quantities are identical. The 
formation timebength can be determined in a time-dependent and in a time-independent 
approach. 

In the time dependent formulation, one starts from the energy-time uncertainty rela- 
tion, 

The lifetime of the excitation in rest frame of the projectile is given by 

AEAtx1. 

1 
T a  
f M f - M i '  

(74) 

(75) 

In order to obtain the formation time, we have to transform zf to the target rest frame, 
by multiplying zf  with the relativistic 7-factor, 

where 

P t = A t = y 2  ----z f -  f - n ; i  f '  

We finally obtain for the formation time 

2P t M  
f q-q' 



In the time-independent approach, one starts from the coordinate-momentum uncer- 
tainty relation, 

The longitudinal momentum transfer was already given in Eq. ,72. It is calculated in the 
following ,way, 

A p L k  2 1. (79) 

M2f-A$!. 
~ p ~ = + J ~ - # F Z i i j =  2P - (80) 

According to the uncertainty relation Eq..(79), the excited state lives over the longitudi- 
nal extension . 

(8 1) 2P 
M 

1 
l f 3 I Z R - -  

ApL MZf-q'' 
As expected; the formation length is identical to the formation time given in Eq. (78). 

We see from Eqs. (78) and (81) that for large initial projectile momentum, the process 
develops at large longitudinal distances in the target rest frame. At the high center of 
mass energies of RHIC and LHC, the coherence length will. be much larger than the 
nuclear radius and all scattering processes will be governed by coherence effects (the 
coherence length becomes as long as several hundreds fm). 

2.2. Elementary hadron-hadron scattering at high energies 

All 05 the formalism presented above is completely independent of the 'underlying 
interacti0n.r Before concluding this section, we will briefly discuss the main properties 
of hadron-hadron scattering at high energies. Let us begin by listing some empirical 
facts about hadronic cross sections: 

Total hadronic cross sections are approximately constant at cm energies of order 
f i  - 20 GeV and slowly rise, ofof - so*08, up to the highest energies accessible in 
experiment (Tevatron energy, @ = 1.8 TeV). 
The diffraction cone shrinks as energy increases, indicating that the size of the 
hadron increases with energy. 
The mean transverse momentum of produced particles is approximately constant 
or increases only slowly with energy, respectively. 

The (approximate) constancy of, the total cross section in the framework of QCD 
implies that high energy hadronic scattering is dominated by two gluon exchan 
see Fig. 9 (left). The two gluon exchange model also <yields a purely imaginary 
scattering amplitude: In order to explain the,increase of the totalccross section with . 
energy, one has to take the radiation of additional gluons into account, see Fig. 9 (right) 
The probability of gluon emission is proportional to a,y N a,lns, where y is rapidity. 
Thus, each gluon,radiation in Fig. 9 (right) contributes a factor Ins to the total cross 
section. Resumming an infinite number of gluon emissions ordered in rapidity; one finds 



FIGURE 9. Double gluon exchange (left, yields an imaginary scattering amplitude and a constant 
cross section. The rise of hadronic cross sections and the shrinkage of the diffraction cone at high energy 
is due to radiation of additionulgluons (right). 

that the total cross section behaves like 

where a = as. 

energy, the t-differential cross section in hadronic collisions behaves like 
This gluon radiation also explains the shrinkage of the diffraction cone. At high 

where B(s) = Ins increases with energy. Such a behavior emerges, if the elastic scattering 
amplitude in impact parameter space is given by 

where the effective hadron radius It;( s) increases as a function of energy. Therefore, the 
shrinkage of the diffraction peak suggests an increase of hadronic sizes with energy. 
In QCD, this can be understood in the following way: Gluons are radiated off the 
projectile with different transverse momenta. As rapidity, or energy, increases, these 
gluons perform a random walk in the impact parameter plane and correspondingly, 
the transverse size of the gluon cloud surrounding the projectile increases. This can 
be regarded as a diffusion process in the impact parameter plane, in which rapidity plays 
the role of time. 

The slow increase of the mean transverse momentum with energy is likely to be 
related to asymptotic freedom. Indeed, at large transverse momentum, pL >> AQcD, the 
strong coupling constant becomes small, a s ( p l )  << 1, which suppresses the production 
of high p L  particles. 
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FIGURE 10. At suflciently high energy, emitted gluons can themselves develop showers. In the squared 
amplitude (right), the gluons combine to ladders, which are denoted by zigzag lines. Fusion of gluon 
ladders is the mechanism behind gluon shadowing. A resummation of fan diagrams like in the lef Bgure, 
corresponds to classical solutions [24] of Reggeon Field Theory [25]. 

Eventually, the power4ke growth. of the total hadronic cross section will violate 
the Froissart-Martin bound [23], which states that as a consequence of unitarily and 
analyticity, total cross sections cannot rise faster than 

otot 2 cln's, (85) 

where C is a constant. At sufficiently high energy, emitted gluons can develop showers 
themselves, see Fig. 10. Due to this process, the projectile sees a reduced gluon density in - 
the target and the growth of the cross section is slowed down. This effect, in the squared 
amplitude, realizes a QCD realization of, Gribov's inelastic shadowing (see Fig. 10.) . 
Even though such unitarily corrections might already be present in proton-antiproton 
scattering at Tevatron, they will be much more pronounced in nuclear collisions at RHIC. 

As the magnitude of these effects increases with energy and/or atomic number of the 
colliding nuclei, the classification of diagrams in terms of individual nucleon-nucleon 
amplitudes (or parton ladders) rapidly, starts to lose sense - the non-linear effects 
become extremely important. The treatment of nuclear interactions in this Shighaensity I 

regime will be considered in the following section. 

' 

3. CLASSICAL CHROMODYNAMICS OF RELATIVISTIC 
HEAVY ION coLLrsroNs 

3.1. QCD in the classical regime 

Most of the applications of QCD so far have been limited to the short distance 
regime of high momentum transfer, where the theory becomes weakly coupled and 
can be linearized. While this is the only domain where our theoretical tools based on 
perturbation theory are adequate, this is also the domain in which the beautiful non- 
linear structure of QCD does not yet reveal itself fully. On the other hand, as soon as 
we decrease the momentum transfer in a process, the dynamics rapidly becomes non- 
linear, but our understanding is hindered by the large coupling. Being perplexed by this 
problem, one is tempted to dream about an environment in which the coupling is weak, 
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FIGURE 11. R e  place of relativistic heavy ion physics in the study of QCD; the vertical axis is the 
product of atomic numbers of projectile and target, and the horizontal axes are the momentum transfer 
Q2 and rapidity y = In( l/x) (x is the Bjorken scaling variable). 

allowing a systematic theoretical treatment, but the fields are strong, revealing the full 
non-linear nature of QCD. We are going to argue now that this environment can be 
created on Earth with the help of relativistic heavy ion colliders. Relativistic heavy ion 
collisions allow to probe QCD in the non-linear regime of high parton density and high 
color field strength, see Fig. 11. 

It has been conjectured long time ago that the dynamics of QCD in the high density 
domain may become qualitatively different: in parton language, this is best described in 
terms of parton saturation [27, 28, 291, and in the language of color fields - in terms 
of the classical Chromo-Dynamics [30]; see the lectures [31] and [32] and references 
therein. In this high density regime, the transition amplitudes are dominated not by 
quantum fluctuations, but by the configurations of classical field containing large, N 

l/as, numbers of gluons. One thus uncovers new non-linear features of QCD, which 
cannot be investigated in the more traditional applications based on the perturbative 
approach. The classical color fields in the initial nuclei (the “color glass condensate” 
[31]) can be thought of as either perturbatively generated, or as being a topologically 
non-trivial superposition of the Weizsacker-Williams radiation and the quasi-classical 
vacuum fields [33,34,35]. 



3.1.1. ~ Geometrical arguments I .  

Let us consider an external probe J interacting with the nuclear target of atomic 
number A. At small values of Bjorken x, by uncertainty principle the interaction develops 
over large longitudinal distances z N l/mx, where rn is the nucleon mass. As soon as. 
z becomes larger than the nuclear diameter, the probe cannot distinguish between the 
nucleons.located on the front and back edges of the nucleus, and all partons within 
the transverse area N l/Qz,determined by’the momentum transfer Q participate in the 
interaction coherently.:The density of partons in the transverse plane is given by 

’ . 

where we have assumed that the nuclear gluon distribution scales with the number of 
nucleons A. The probe interacts with,partons with cross section o N as/Qz; therefore, 
depending on the magnitude of momentum transfer Q, atomic number A, and the value 
of Bjorken x, one may encounter two regimes: . 

o p A  << 1 - this is a familiar.“dilute” regime of incoherent interactions, which is 
well described by the methods of perturbative QCD; a 

opA >> 1 - in this regime, we deal with a’ dense parton system. Not only do the 
“leading: twist” expressions become inadequate; but also .the .expansion in higher 
twists, i.e. in multi-parton correlations, breaks down here. 

L 

I 

F ’ I G m  12. Hard probe interacting with the nuclear target resolves the transverse distance N l/./iZ , 
(@ is the square of the momentum transfer) and,. in the target rest frame, the longitudinal distance 
N l/(mx) (m is the nucleon mass andx the Bjorken variable). 

The border between the two regimes can be found from the condition opA N 1; it 
determines the critical value of the momentum transfer (“saturation scale”[27]) at which 



the parton system becomes to look dense to the probe': 

In this regime, the number of gluons from (87) is given by 

where QzRi N A. One can see that the number of gluons is proportional to the inverse 
of as( Q:), and becomes large in the weak coupling regime. In this regime, as we shall 
now discuss, the dynamics is likely to become essentially classical. 

3.1.2. Saturation as the classical limit of QCD 

Indeed, the condition (87) can be derived in the following, rather general, way. As a 
first step, let us note that the dependence of the action corresponding to the Lagrangian 
(9) on the coupling constant is given by 

Let us now consider a classical configuration of gluon fields; by definition, GEv in such 
a configuration does not depend on the coupling, and the action is large, S >A. The 
number of quanta in such a configuration is then 

where we re-wrote (89) as a product of four-dimensional action density p4 and the four- 
dimensional volume V'. 

Note that since (90) depends only on the product of the Planck constant h and the 
coupling g2, the classical limith --+ 0 is indistinguishable from the weak coupling limit 
g2 -+ 0. The weak coupling limit of small g2 = 4nas therefore corresponds to the semi- 
classical regime. 

The effects of non-linear interactions among the gluons become important when 
aPAP N A i  (this condition can be made explicitly gauge invariant if we derive it from 
the expansion of a correlation function of gauge-invariant gluon operators, e.g., G29. In 
momentum space, this equality corresponds to 

Note that since Q: N All3, which is the length of the target, this expression in the target rest frame can 
also be understood as describing a broadening of the transverse momentum resulting from the multiple 
re-scattering of the probe. 



Qs is the typical value of the gluon momentum below which the interactions become 
essentially non-linear. 

Consider now a nucleus A boosted to a high momentum. By uncertainty principle, the 
gluons with transverse momentum Q, are extended in the longitudinal and proper time 
directions by - 1/12,; since the transverse area is nRi, the four-volume is V4 - nRi/Q:. 
The resulting fourdensity from (90) is then 8 

where at the last stage we have used the non-linearity condition (91), p4 - &..It is easy 
to see that (92) coincides with the saturation condition (87), since the number of gluons 
in the infinite momentum frame Ng N xG(x, Q:). . 

In view of the,significance of saturation criterion for the rest of the material in these 
lectures, let us present yet another argument, traditionally followed in the discussion of 
classical limit in electrodynamics [36]. The energy of the gluon,field per unit volume 
is - @2. The number of elementary “oscillators of the field”, also per unit volume, is - 03. To get the number of the quanta in the field we have to divide the energy of the 
field by the product of the number of the oscillators - o3 and the average energylio of 
the gluon: 

The classical approximation holds when Nx >> 1. Since the energy m of the oscillators 
is related to the time At over which the average energy is computed by o - 1 /At, we get 

(94) .::I’ 

Note that the quantum mechanical uncertainty principle for the energy of the field reads 

P2 m4 4, (95) t .  ~ 

so the condition (94) indeed defines the quasi-classical limit. 

using (92) we find1y.get that the classical description applies when 

. 
Since &2 is proportional to the action density p4, and the typical time is At - l/kL, 

I 

3.1.3. The absence of mini-jet correlations 

When the occupation numbers of the field become large, the matrix elements of the 
creation and annihilation operators of the gluon field defined by 



become very large, 
N+ =(&!e ) > 1 ,  

ka ka ka 
so that one can neglect the unity on the r.h.s. of the commutation relation 

and treat these operators as classical c-numbers. 
This observation, often used in condensed matter physics, especially in the theoretical 

treatment of superfluidity, has important consequences for gluon production - in par- 
ticular, it implies that the correlations among the gluons in the saturation region can be 
neglected: 

Thus, in contrast to the perturbative picture, where the produced mini-jets have strong 
back-to-back correlations, the gluons resulting from the decay of the classical saturated 
field are uncorrelated at kL 6 Qs. 

Note that the amplitude with the factorization property (100) is called point-like. 
However, the relation (100) cannot be exact if we consider the correlations of final- 
state hadrons - the gluon mini-jets cannot transform into hadrons independently. These 
correlations caused by color confinement however affect mainly hadrons with close 
threemomenta, as opposed to the perturbative correlations among mini-jets with the 
opposite three-momenta. 

It will be interesting to explore the consequences of the factorization property of the 
classical gluon field (100) for the HBT correlations of final-state hadrons. It is likely 
that the HBT radii in this case reflect the universal color correlations in the hadronization 
process. 

(W, )A(k2)44(kn)) (A@, ))(A(k2))-..(A(kn))- (100) 

Another interesting property of classical fields follows from the relation 

which determines the fluctuations in the number of produced gluons. We will discuss the 
implications of Eq. (101) for the multiplicity fluctuations in heavy ion collisions later. 

3.2. Classical QCD in action 

3.2.1. Centrality dependence of hadron production 

In nuclear collisions, the saturation scale becomes a function of centrality; a generic 
feature of the quasi-classical approach - the proportionality of the number of gluons to 
the inverse of the coupling constant (90) - thus leads to definite predictions [37] on the 
centrality dependence of multiplicity. 

Let us first present the argument on a qualitative level. At different centralities (de- 
termined by the impact parameter of the collision), the average density of partons (in 
the transverse plane) participating in the collision is very different. This density p is 



proportional to the average length of nuclear material involved in the collision; which in 
turn approximately. scales with the power of the number Npan of participating nucleons, 
p N ZV;$ The density of partons defines the value of the saturation scale, and so we 
expect 5 

The gluon multiplicity isthen, as we discussed above, is 

(103) : .  

where SA is the nuclear overlap area, determined by atomic number and the centrality 
of collision. Since SA Q: N Npufi by definitions of the transverse density and area, from 
(103) we get ~ 

- N  Npart lnNpurt7 ( 1 0 4 '  ' 
dr7 

which shows that the gluon multiplicity shows a logarithmic deviation from the scaling 
in the number of participants. 

To quantify the argument, we need to explicitly evaluate the average density of partons 
at a given centrality. This can be done by using Glauber theory, ,which allows to evaluate 
the differential 'cross section of the nucleus-nucleus interactions. The shape of the 
multiplicity distribution at a given (pseudo)rapidity q can then be readily obtained by 
using the formulae introduced in section 2: 

(105) . 

where Po(b). is the probability of no interaction among the nuclei at a given impact ... 
parameter b: . 

(106) 
o,, is the inelastic nucleon-nucleon cross section, and TAB(b) is the nuclear overlap 
function for the collision of nuclei' with atomic numbers A and B; *we have used the . 
three-parameter WoodsSaxon nuclear density distributions [39]. ' 

Po@) = (1 - %diB(b))AB; 

The correlation function 9 ( n ;  b) is given by 

here E(b) is the mean multiplicity at a given impact parameter b; the formulae for. 
the number of participants, and the number of binary collisions can be found in [38]. 
The parameter a describes the strength of fluctuations; for the classical gluon field; 
as follows from (101), a = 1. However,.the strength of fluctuations can be changed 
by the subsequent evolution of the system and by hadronization process. Moreover, in 
a real experiment, the strength of fluctuations strongly depends on the acceptance. In 
describing the PHOBOS distribution [46], we have found that the value a = 0.6 fits the 
data well. 

. .  . .  . a  

, ' ? . .  



In Fig. 13, we compare the resulting distributions for two different assumptions about 
the scaling of multiplicity with the number of participants to the PHOBOS experimental 
distribution, measured in the interval 3 < 177 I < 4.5. One can see that almost indepen- 
dently of theoretical assumptions about the dynamics of multiparticle production, the 
data are described quite well. At first this may seem surprising; the reason for this re- 
sult is that at high energies, heavy nuclei are almost completely “black”; unitarity then 
implies that the shape of the cross section is determined almost entirely by the nuclear 
geometry. We can thus use experimental differential cross sections as a reliable handle 
on centrality. This gives us a possibility to compute the dependence of the saturation 
scale on centrality of the collision, and thus to predict the centrality dependence of par- 
ticle multiplicities, shown in Fig. 14. (see [37] for details). 

1000 

100 @ 
v) 

c i-r 

2 10 

0 1000 2000 3000 4000 5000 6000 7000 8000 
(PP1,+PN,,)/2 

J?IGURE 13. Charged multiplicity distribution at 4 = 130 A GeK solid line (histogram) - PHOBOS 
result; dashed line - distribution corresponding to participant scaling (x = 0); dotted line - distribution 
corresponding to the 37% admixture of “hard” component in the multiplicity; see text for details. 

3.2.2. Energy dependence 

Let us now turn to the discussion of energy dependence of hadron production. In 
semi-classical scenario, it is determined by the variation of saturation scale Qs with 
Bjorken x = Q8/& This variation, in turn, is determined by the x- dependence of 
the gluon structure function. In the saturation approach, the gluon distribution is related 
to the saturation scale by Eq.(87). A good description of HEM data is obtained with 
saturation scale QZ = 1 j 2 GeV2 with W - dependence (W 3 6 is the center-of-mass 
energy available in the photon-nucleon system) [48] 

Q: = W? (108) 
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= 0 at I 

t 

where A N 0.25 + 0.3. In spite of significant uncertainties in the determination of the 
gluon structure functions, perhaps even more important is the observation [48] that the 
HEM data exhibit scaling when plotted as a function of variable 

a 
'7' 

z =  - Q2 (6) 
Qi 

where the value of A is again within the limits A N 0.25 + 0.3. Tn high density QCD, this 
scaling is a consequence of the existence of dimensionful scale [27,30] <' 

Using the value of Q: N 2.05 GeV2 extracted [37] at& = 130 GeV and A = 0.25 [48] 
used in [40], equation (120) leads to the following approximate formula for the energy 
dependence of charged multiplicity in central Au - Au collisions: 

3.93+0.25.ln( fi(GeV) )] . a 

130. 
(111) .. 

At f i  = 130 GeV, we estimate f r0m:Eq.( l l l )~2/N~,~ dNch/dq l q C l =  3.42f0.15, 
to be compared'to the average experimental value of 3.37 ik 0.12 [46; 44, 45, 471. At 



fi = 200 GeV, one gets 3.91 f 0.15, to be compared to the PHOBOS value [46] of 
3.78 f 0.25. Finally, at fi = 56 GeV, we find 2.62 f 0.15, to be compared to [46] 
2.47 f 0.25. It is interesting to note that formula (1 1 l), when extrapolated to very high 
energies, predicts for the LHC energy a value substantially smaller than found in other 
approaches : 

= 10.8 f 0.5; 6 = 5500 GeV, 
17<1 

corresponding only to a factor of 2.8 increase in multiplicity between the RHIC energy 
of 4 = 200 GeV and the LHC energy of 4 = 5500 GeV (numerical calculations show 
that when normalized to the number of participants, the multiplicity in central Au - Au 
and Pb - Pb systems is almost identical). The energy dependence of charged hadron 
multiplicity per participant pair is shown in Fig.15. 
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FIGURE 15. Energy dependence of charged multiplicity per participant pair at RHIC energies; solid 
line is the result ( I l l ) .  

One can also try to extract the value of the exponent A from the energy dependence 
of hadron multiplicity measured by PHOBOS at fi = 130 GeV and at & = 56 GeV; 
this procedure yields A N 0.37, which is larger than the value inferred from the HEM 
data (and is very close to the value A N 0.38, resulting from the final-state saturation 
calculations [50]). 



3.2.3. Radiating the classical glue 

Let us now proceed to the quantitative calculation of the (pseudo-) rapidity and 
centrality dependences [49]. We need to evaluate the leading $tree diagram describing 
emission of gluons on the classical level, see Fig. 16’. 

FIGURE 16. The Mueller diagram for the classical gluon radiation. 

Let us introduce the unintegrated gluon distribution qA(x, e) which describes the 
probability to find a gluon ,with a‘given x and transverse momentum 4 inside the nucleus 
A. As follows from this definition, the unintegrated distribution 4s related to the gluon. . 
structure function by 

xGA (x,  pt 2 ) = IPA(x,@);. (1 13) 

when p: > Q:, the unintegrated distribution corresponding to the bremsstrahlung radia- 
tion spectrum is .) 

(114) I :  

In the saturation region, the gluon structure function is given by (88); the correspond- 
ing unintegrated gluon distribution has only logarithmic dependence on the transverse . 
momentum: ! 

(115) 

’ Note that this “mono-jet” production diagram makes obvious the absence of azimuthal correlations in 
the saturation regime discussed above, see Eq. (100). 



where SA is the nuclear overlap area, determined by the atomic numbers of the colliding 
nuclei and by centrality of the collision. 

The differential cross section of gluon production in a AA collision can now be written 
down as [27,41] 

where x1,2 = (pt/&') exp(fq), with q the (pseudo)rapidity of the produced gluon; the 
running coupling as has to be evaluated at the scale Q2 = mat{#, (p - k):} . The rapidity 
density is then evaluated from (1 16) according to 

where crM is the inelastic cross section of nucleus-nucleus interaction. 
Since the rapidity y and Bjorken variable are related by In 1 /x = y, the x- dependence 

of the gluon structure function translates into the following dependence of the saturation 
scale Q: on rapidity: 

Q:(s;fy) = Q;(s;y = 0) exp(fAy). (118) 

As it follows from (1 18), the increase of rapidity at a fixed W = f i  moves the wave 
function of one of the colliding nuclei deeper into the saturation region, while leading 
to a smaller gluon density in the other, which as a result can be pushed out of the 
saturation domain. Therefore, depending on the value of rapidity, the integration over 
the transverse momentum in Eqs. (1 16),(117) can be split in two regions: i) the region 
AQcD < ,$ < Qs,min in which the wave functions are both in the saturation domain; 
and ii) the region A << Qs,min < kt < Qs,max in which the wave function of one of 
the nuclei is in the saturation region and the other one is not. Of course, there is also 
the region of & > QS,-, which is governed by the usual perturbative dynamics, but 
our assumption here is that the r6le of these genuine hard processes in the bulk of 
gluon production is relatively small; in the saturation scenario, these processes represent 
quantum fluctuations above the classical background. It is worth commenting that in the 
conventional mini-jet picture, this classical background is absent, and the multi-particle 
production is dominated by perturbative processes. This is the main physical difference 
between the two approaches; for the production of particles with pt >> Qs they lead to 
identical results. 

To perform the calculation according to (1 17),( 116) away from y = 0 we need also 
to specify the behavior of the gluon structure function at large Bjorken x (and out of 
the saturation region). At x -+ 1, this behavior is governed by the QCD counting rules, 
xG(x) - (1 - x)~, so we adopt the following conventional form: xG(x) - x-A (1 - x)~. 

We now have everything at hand to perform the integration over transverse momentum 
in (117), (116); the result is the following [49]: 

dN 2 - = const SA Qs,min In 
dY 



(119) * 

where the constant is energy-independent, SA is the nuclear overlap area, Q: E Q:(s;y = 
019 and Qs,min(max) are defined as the smaller (larger) values of (1 18); at y = 0, Q:,min = 

Q:,- = &(s) = &(so) x ( S / S ~ ) ~ / ~ .  The first term in the brackets in (119) originates 
from the region in which both nuclear wave functions are in the saturation regime; this 
corresponds to the familiar - ( l/as) QZR; term in the gluon multiplicity. The second 
term comes from the region in which only one of the wave functions is in the saturation 
region. The coefficient 1/2 in front of the second term in square brackets’comes from kt 
ordering of gluon momenta in evaluation of the integral of Eq.(l16). 

The formula (119)‘has been derived using the form (115) for the unintegrated gluon 
distributions. We have checked numerically that the use of more sophisticated functional 
form of qA taken from the saturation model of Golec-Biernat and Wiisthoff [48] in 
Eq.(116) affects the results only at the level of about 3%. . 

Since SA& N NPap (recall that & >> A L D  is defined as the density of partons in the 
transverse plane, whch is proportional to the density of participants), we can re-write 
(1 19) in the following final form [49] 

with e,”(s).= QZ(s6) ( S / S ~ ) ’ / ~ .  This formula expresses theapredictions of high density 
QCD for the, energy, centrality, rapidity, and atomic number dependences of hadron 
multiplicities in nuclear collisions in terms of a single scaling function. Once the energy- 
independent constant c - 1 and Q:(so) are determined at some energy so, Eq. (120) 
contains no free parameters. At y = 0 the expression (119) coincides exactly with the 
one derived in [37], and extends it to describe the rapidity and energy dependences. 

3.2.4. Converting gluons*into hadrons 

The distribution (120) refers to the radiated gluons, while what is measured in experi- 
ment is, of course, the distribution of final hadrons. We thus have to make an assumption 
about the transformation of gluons into hadrons. The gluon mini-jets are produced with 
a certain virtuality, which changes as the system evolves; the distribution inrapidity is 
thus not preserved. However, in the analysis of jet structure it has been found that the 
angle ofi the produced gluon is remembered by the resulting9hadrons; this.property of 
“local parton-hadron duality” (see [43] and references therein) is natural if one assumes 
that the hadronization is a soft process which cannot change the direction of the emitted 



radiation. Instead of the distribution in the angle 8, it is more convenient to use the dis- 
tribution in pseudo-rapidity q = - In tan( 8/2). Therefore, before we can compare (1 19) 
to the data, we have to convert the rapidity distribution (120) into the gluon distribution 
in pseudo-rapidity. We will then assume that the gluon and hadron distributions are dual 
to each other in the pseudo-rapidity space. 

To take account of the difference between rapidity y and the measured pseudo-rapidity 
q ,  we have to multiply (1 19) by the Jacobian of the y ++ q transformation; a simple 
calculation yields 

cosh q 

where m is the typical mass of the produced particle, and pt is its typical transverse 
momentum. Of course, to plot the distribution (120) as a function of pseudo-rapidity, 
one also has to express rapidity y in terms of pseudo-rapidity q ; this relation is given by 

1 

122) 

obviously, h( ; pt;  m) = dy(  q ; pt ;  m)/dq .  
We now have to make an assumption about the typical invariant mass m of the gluon 

mini-jet. Let us estimate it by assuming that the slowest hadron in the mini-jet decay is 
the p-resonance, with energy Ep = (m; + p i l t  + p;,2)1/2, where the z axis is pointing 
along the mini-jet momentum. Let us also denote by xi the fractions of the gluon energy 
qo carried by other, fast, i particles in the mini-jet decay. Since the sum of transverse 
(with respect to the mini-jet axis) momenta of mini-jet decay products is equal to zero, 
the mini-jet invariant mass m is given by 

where mp,t = (mi +p$, t )1 /2 .  In Eq. (123) we used that x i x i  = 1 and qo M q2 = Qs. 
Taking pp,2 M pp,t M 300 MeV and p mass, we obtain meff M 0.5 GeV. 

N Qs - 1 GeV in Eqs.( 121,122). Since the typical 
transverse momentum of the produced gluon mini-jet is Qs, we take pt = Qs in (121). 
The effect of the transformation from rapidity to pseudo-rapidity is the decrease of 
multiplicity at small q by about 25 - 30%, leading to the appearance of the M 10% 
dip in the pseudo-rapidity distribution in the vicinity of q = 0. We have checked that 
the change in the value of the mini-jet mass by two times affects the Jacobian at central 
pseudo-rapidity to about fi lo%, leading to N 3% effect on the final result. 

The results for the Au - Au collisions at 4 = 130 GeV are presented in Figs 17 and 
18. In the calculation, we use the results on the dependence of saturation scale on the 

We thus use the mass m2 N 2Qsme 
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FIGURE 17. . Centrality dependence of charged hadron production per participant at differentpseudo- 
rapidity q intervals in Au - Au collisions at 4 = 130 GeK from 1491, the data are from [46].. 

mean number of participants at 1/;F = 130 GeV from [37], see Table 2 of that paper. 
The mean number of participants in a given centrality cut is taken from the PHOBOS 
paper [46]: One can see that both the centrality dependence and the rapidity dependence 
of the 4 = 130 GeV PHOBOS data are well reproduced below q N h4. The rapidity 
dependence has been evaluated with A = 0.25, which is within the range A = 0.25 ~ 0 . 3  
inferred from the HERA data [48]: The,discrepancy above q N f 4  is not surprising 
since our approach does not properly take into account multi-parton correlations which 
are important in the fragmentation region. 

Our predictions for Au - Au collisions at 4 = 200 GeV are presented in [49]. The 
only parameter which governs the energy dependence is the exponent A, which.we. 
assume to be A II 0.25 as inferred from the HEM data. The,absolute prediction for the 
multiplicity, as explained above, bears some uncertainty, but there is a definite feature of 
our scenario which is'distinct from other approaches. It is the dependence of multiplicity . , 
on centrality, which around q = 0 is determined solely by the running of the QCD strong 
coupling [37]. As a result, the centrality dependence at f i  = 200 GeV is somewhat less 
steep than at fi = 130. While the difference in the shape at these two energies is quite 
small, in the perturbative mini-jet picture this slope should increase, reflecting the growth 
of the mini-jet cross section with energy [42]. 
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HGURE 18. Pseudo-rapidity dependence of charged hadron production at different cuts on centrality 
in Au -Au collisions at 4 = 130 GeVf i rn  [49], the data arefrom [46]. 

3.2.5. Further tests 

Checking the predictions of the semi-classical approach for the centrality and 
pseudo-rapidity dependence at f i  = 200 GeV is clearly very important. What other 
tests of this picture can one devise? The main feature of the classical emission is that 
it is coherent up to the transverse momenta of about 1/z Qs (about N- 2 GeVlc for 
central Au - Au collisions). This means that if we look at the centrality dependence of 
particle multiplicities above a certain value of the transverse momentum, say, above 1 
GeV/c, it should be very similar to the dependence without the transverse momentum 
cut-off. On the other hand, in the twwomponent “soft plus hard” model the cut on 
the transverse momentum would strongly enhance the contribution of hard mini-jet 
production processes, since soft production mechanisms presumably do not contribute 
to particle production at high transverse momenta. Of course, at sufficiently large value 
of the cutoff all of the observed particles will originate from genuine hard processes, and 
the centrality dependence will become steeper, reflecting the scaling with the number 
of collisions. It will be very interesting to explore the transition to this hard scattering 
regime experimentally. 



Another test, already discussed above (see Eq. (100)) is the study of azimuthal corre- 
lations between the produced high cpt particles. In'the saturation scenario these correla- 
tions should be very small below pt N 2 GeVk in central collisions. At higher transverse 
momenta, and/or for more peripheral collisions (where the saturation scale is smaller) 
these correlations should be much stronger. 

3.3. Does the vacuum-melt? 

The approach described above allows us to estimate the'initial energy,density of 
partons achieved at RHIC. Indeed, in this approach the formation time of-partons is 
zo N l/Qs, and the transverse momenta of partons are about $ N Qs. We thus can use 
the Bjorken formula and the set of parameters deduced above to estimate [37] 

N 18 GeV/fm3 <$> d2N d2N 
&?--I-+ 

zo d2bdq 

for central Au - Au collisions at @ = 130 GeV. This value ,is well above the, energy 
density needed to induce the QCD phase transition according to the lattice calculations. : 
However, the picture of gluon production,considered above seems to imply that the 
gluons simply flow from the initial state of the incident nuclei to the final state, where , 

they fragment into hadrons, with nothing spectacular happening on the way. In fact, one 
may even wonder if the presence of these gluons modifies at all the structure of the 
physical QCD vacuum. > 

To answer this question theoretically, we have to possess someknowledge about the 
non-perturbative vacuum properties. While in general the problem' of vacuum structure 
still has not been solved (and this is one of the main reasons for the heavy ion research!) 
we do know one class of vacuum solutions - the instantons. It is thus interesting+to 
investigate what happens to the QCD vacuum in the presence of strong external classical 
fields using the example of instantons [35J 

The problem+ of small instantons in a slowly .varying# background field was first 
addressed in [51,52] by introducing the effectivehstanton Lagrangian Lt$(x) 

I 

in which no(p) is the instanton size distribution function in.the vacuum, qZv is the 
't Hooft symbol in Minkowski space, and Raa' is the matrix of rotations in color space, 
with dR denoting the averaging over the instanton color orientations. 

The complete field of a single instanton solution could be reconstructed by perturba- 
tively resumming the powers of the effective instanton Lagrangian which corresponds 
to perturbation theory in powers of the instanton size parameter p2. In our case here the 
background field arises due to the strong source current JE.. The current can be due to 
a single nucleus, or resulting from the two colliding nuclei. Perturbative resummation 
of powers of the source current term translates itself into resummation of the powers 
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FIGURE 19. Distributions of instanton sizes in vacuum for QCD with three Eightflavors (upper curve) 
versus the distribution of instanton sizes in the saturation environment produced by a collision of two 
identical nuclei for c = 1 (middle curve) and c = 21n2 (lower curve) with Q: = 2GeV2;from 1331. 

of the classical field parameter a,2A1/3 [30, 531. Thus the problem of instantons in the 
background classical gluon field is described by the effective action in Minkowski space 

The problem thus is clearly formulated; by using an explicit form for the radiated clas- 
sical gluon field, it was possible to demonstrate [35] that the distribution of instantons 
gets modified from the original vacuum one no@) to 

where z0 is the proper time. The result EQ. (127) shows that large size instantons are 
suppressed by the strong classical fields generated in the nuclear collision (see Fig. 19)3. 
The vacuum does melt! 
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