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Abstract 

Neutrino beams from the decay of muons in a storage 
ring offer the prospect of very high flux, well-understood 
spectra, and equal numbers of electron and muon neutrinos, 
as desirable for detailed exploration of neutrino oscillations 
via long baseline detectors [l]. Such beams require. large 
numbers of muons, and hence a high performance target 
station at which a l-4 MW proton beam of 16-24 GeV im- 
pinges on a compact target, all inside a high field solenoid 
channel to capture as much of the phase volume of soft pi- 
ons as possible. A first concept was based on a carbon tar- 
get, as reported in 2000 the Neutrino Factory Study-I [2]. A 
higher performance option based on a free mercury jet has 
been studied in 2001 as part of the Neutrino Factory Feasi- 
bility Study-II [3,4]. An overview of a mercury jet target 
facility is presented here, including requirements, design 
concept and summaries of simulated performance. Further 
details are presented in related papers at this conference. 

1 THE TARGET FACILITY 

A muon collider [lg] or a neutrino factory based on a 
muon storage ring [l, 2, 3, 41 require intense beams of 
muons, which are obtained from the decay of pions pro- 
duced in proton-nucleus collisions. To maximize the yield, 
pions of momentum near 300 MeV/c should be captured, 
as illustrated in Fig. 1. For proton energies above 10 GeV, 
the pion yield per unit of proton beam energy is larger for 
a high-2 target [5]. For proton beam energies in the MW 
range, beam heating would melt/boil a stationary high-2 
target, so a moving target must be used. A mercury jet 
target is the main option considered here, although several 
alternatives remain under active study [6, 71. For greater 
detail, consult Chap. 3 of [3]. See also [S]. 

The low-energy pions are produced with relatively large 
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Figure 1: Comparison of pion yield measured in BNL E910 
with a MARS calculation. 

angles to the proton beam, and efficient capture into a decay 
and phase rotation channel [9] is obtained by surrounding 
the target with a 20-T solenoid magnet, whose field tapers 
down to 1.25 T over several meters, as sketched in Fig. 2. 
Pion yield is maximized with a mercury target in the form a 
l-cm-diameter cylinder, tilted by about 100 mrad with re- 
spect to the magnetic axis. To permit the proton beam to 
interact with the target over 2 interaction lengths, the pro- 
ton beam is tilted by 33 mrad with respect to the mercury 
jet axis. See also Fig. 3. 

A mercury pool inside the capture solenoid intercepts 
the mercury jet and the unscattered proton beam, as shown 
in Fig. 4. The mercury pool, surrounding tungsten car- 
bide/water shielding, and the resistive insert of the 20-T 
capture magnet [ 101 are isolated from upstream and down- 
stream beamline elements by a pair of double-walled Be 
windows. This entire unit can be replaced by remote ma- 
nipulation should failure occur. The absorbed radiation 
dose on components near the target is quite large [5], as 
illustrated in Fig. 5, such that in a 4 Mw proton beam, their 



Figure 2: Sketch of the target and capture system based on 
a mercury jet inside a 20-T solenoid magnet. 

Figure 3: The inner region of the 20-T capture magnet 
along with the tilted mercury jet target and proton beam. 

lifetime against radiation damage may only be 5 years. 
The capture solenoid is encased in thick concrete shield- 

ing as part of the target facility that includes an overhead 
crane, hot cells with remote manipulation capability, and a 
mercury pumping and purification loop [ 111, as sketched in 
Fig. 6. 

The use of a mercury jet target raises several novel is- 
sues. The rapid energy deposition in the mercury target by 
the proton beam leads to intense pressure waves that can 
disperse the mercury [12, 13, 141. Further, as the mercury 
enters the strong magnetic field eddy currents are induced 
in the mercury, and the Lorentz force on these currents 
could lead to distortion of the jet [15, 161. On the other 
hand, the magnetic pressure on the mercury once inside the 
solenoid will damp mechanical perturbation of the jet. 

An R&D program is underway to assess these critical 
issues [17]. 
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