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Simulation of high intensity accelerators leads to the so- 
lution of the Poisson Equation, to calculate space charge 
forces in the presence of acceleration chamber walls. We 
reduced the problem to “two-and-a-half” dimensions for 
long particle bunches, characteristic of large circular accel- 
erators, and applied the results to the tracking code Orbit. 
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Figure 1: Frozen matched beam. Envelope is also shown. 

1 THE SPACE CHARGE PROBLEM 

In PIC tracking of an accelerator, a “herd” of randomly 
generated macro particles are pushed through a lattice rep- 
resented by a sequence of maps[3]. Once all the macros 
have reached certain locations, SC (space charge) nodes, 
their density p is calculated by binning to a grid, and the 

In Cartesian coordinates Poisson becomes 

potential @ is found by solving the Poisson Equation with 
boundary (wall) conditions 

V”@ = -&p, Pwall(? YTZ) = dx, Y, 2) (1) 

From the potential 9, SC force components (with a coef- 
ficient to account for the balance between electrostatic and 
magnetic action), are calculated by derivation and applied 
to each macro as transverse angle kicks 

With both p-(z) and aZ(z) piece-wise constant, equate z 
and (2, y) functions on both sides of Eq.(5), to obtain 

A$= Fdt 
s 

(2) 

Then, an approximate solution is obtained by solving for 
ap, in the transverse space using pU, and then multiply the 
result by the constant Cp 3 

@(O)(s,y,z) = @-@,(a: y). * , 17) 

In a ring with long bunches we may uncouple the transverse 
motion from the longitudinal 

For a better solution, use a perturbative method. With 

Q?‘(z) = Q, 3 + d(z) (4 small) in Eq.5, find, after can- 
celing out the lowest order terms 

Assuming in the center of the beam: 4(O) = 0, obtain a 
solution 

@t”(Z) = CL+: + --- l d@z (0) cos(w.2) (9) 

P(G Y, 2) = Pz(Z)Pu(? Y) (3) 

and solve the Poisson problem in parallel in many longitu- 
dinal beam slices, where macros are subject to different SC 
kicks, due to different transverse beam aspect ratios. 

Since lattice map sequence controls the propagation, and 
the Poisson problem must be solved with all the macros 
evaluated at the same time, when the herd reach a SC 
node, each macro is longitudinally moved with respect to 
some reference (synchronous particle), using lattice trans- 
fer maps. Fig. 1 show a beam bunch thus “frozen” at a given 
time in a simple FODO channel for SC calculation. 

Limitations of this procedure are that maps used to put 
macros in their appropriate place are for the bare lattice (no 
extra focusing and tune shift due to SC forces), and that 
longitudinal forces between slices are disregarded. 2 POISSON SOLVERS 

A better approximation is obtained by decomposing also 
the potential @ in a longitudinal and a transverse part 

2.1 Integral Poisson Solvers 

The integral formulation of Poisson equation is 
@(G Y, J) = @‘,(z)@lL(z, !/I (4 
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Note: (1) The frequency w is a (weak) function of (.c, y). 
i.e. transverse charge density and transverse potential have 
similar shape. (2) The derivative of the longitudinal po- 
tential in the center of the slice in Eq.(9) is approximately 
proportional to the longitudinal variation of current in the 
beam at that location, in agreement with the basic result of 
the impedance model. 

ptL(Q) 4(P) = CP~ /pjy dQ 



with P a field point, Q a source point, and C is a perveance 
coefficient including the factor $. 

A direct integration of Eq. 10 (Brute Force, or BF) gives 
a very transparent solution, with limitation: (1) arbitrary 
treatment of poles arising from field points accidentally co- 
incident with source points, (2) difficulties to include im- 
ages on walls in the calculation, (3) length of execution. 

Eq.( 10) can be solved by convolution, by first perform- 
ing a FFT of the Green function G(u) = $ and of the 
charge density 

and then find the potential by the anti-FFT of the convolu- 
tion 

G(T) = Cp,,FFT-1 (c(w) *+-&I)) . (12) 

FFT needs a grid twice the size of the beam to avoid aliases. 

2.2 Diflerential Poisson Solvers 

The differential Poisson Eq.(l) can be solved by LU de- 
composition, by discretization on an N x N grid 

-4Tpij = Ck. Cfj@kl, G(P) = -&$I(&) 
(13) 

In Cartesian coordinates, the Laplacian is written as 

C is a very large N2 x N” band-sparse matrix. In general, 
its inverse is dense. 

Eq. 13 can also be effectively solved by iteration. From 

pi i = @‘i-l,j + @i,j+l + @i+l,j + ai.j-1 - 4@i,j 
h3 

(15) 
it is, at iteration k 

2.3 Walls 

The effect of walls is classically treated by using 
impedances 2, [4], calculated as a function of frequency 
mode. Voltage kicks are applied to The FFT components 
of the current.Another approach with an electrical circuit 
analog can find how the beam is coupled to walls via E-M 
fields[5]. 

The Poisson Eq. allows one to calculate walls by adding 
to the true charges in the beam, image charges and currents 
on the walls. Images need to be known in advance for in- 
tegral Poisson solvers. In differential solvers, knowledge 
of wall potential suffices, and images can be subsequently 
calculated. This suggests the interesting possibility that, in 
turn, Poisson solvers can be used to calculate impedances 

9 in odd wall geometries. 

We must extend the grid to the walls. A Cartesian grid 
is often not suitable, since it will end up in a bad density of 
points at the wall, essentially ignoring comers. A cylindri- 
cal or an elliptical transverse grid, Fig.2, or more generally 
an adaptive grid is better fit to treat walls. 
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Figure 2: Elliptic mesh. Equal cell areas at a given radius 

The Laplacian in the elliptic coordinate system is 

where the azimuthal coordinate 0 is the parameter along the 
grid lines, y is the ratio of the ellipse axes, 

a2 = sin20 + -cos2e 
G 

1 , ,i3=2 i-, sinecose. 
( 1 Y 

The discrete 9-point Laplacian for the elliptic grid with ;1 

radial grid refinement ratio dr i+l /dri = k is 

where the coefficients are functions of k, a, B, 0, clr, &. 

3 PARALLEL COMPUTING 

To push a large herd of many representative macro particles 
around the lattice of an accelerator under SC forces we use 
parallel computers with many nodes, each consisting of a 
processor and associated memory. Our paradigm of choice 
was MPI (Message Passing Interface)[6]. 

3.1 Parallel Tracking 

In rings particles may be tracked for many turns, from 10 3 
to 10”. A typical ring lattice may contain hundreds to thou- 
sands transfer maps and SC nodes per turn. 

When self forces are negligible, tracking is an “embar- 
rassing parallel” problem, where each processor runs the 
same code on a subset of macro particles. Space charge 
dominated beams lead to much more complex parallel 
computing issues. In this case, The Poisson problem is 
dealt with following one of two possible strategies:(l) each 
processor pushes a sub-herd of particles residing anywhere 
along the beam, and (2) each processor pushes macros be- 
longing to a given longitudinal slice, as described in Sec. 1. 
The first strategy deals with the beam as a whole, however 
with much message passing, since each processor must 



Table 1: Specifications for the BNL Galaxv Clusterr 11. Table 2: Results of Poisson solvers. Two grid sizes 
BF/FFT/LU 

Grid: 33165133 651129165 
Elapsed Time [s] 

Lu Solver 0.0279 0.1407 
0.0538 0.2558 

BruteForce 0.1343 2.1300 

share the position of each macro at an SC node. The sec- 
ond presents a problem of ghosts, i.e. macros that because 
of longitudinal motion within the beam migrate between 
contiguous slices. MPI contains tools to address the prob- 
lem of ghosts. 

At a SC node, we solve Poisson Eq. The FFT method 
is straightforward in parallel: since the integrals are linear 
operators. The BF is not parallel with regards of number of 
macros involved. The 4-fold size of the nested loops to cal- 
culate the integral depends only on the grid size, the sums 
just being applied at each processor to smaller numbers, i.e. 
the individual partial charge densities. 

For parallel LU, a set of l matrices (one for each wall 
configuration) and their inverse needs to be calculated only 
once, at the beginning of the run. What has to be done at 
a space charge node is the matrix multiplication in paral- 
lel, by assigning to each processor a band of rows of the 
inverted matrix and multiply this band times all the p’s to 
find at each processor the potential or force for a region of 
the grid, as shown in Fig.3. 
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Figure 3: LU Parallel Strategy 

3.2 Examples 

We compared the speed of Poisson solvers (LU, FFT and 
BruteForce) for a herd of 3.6106 macros (10’ per process), 
using the Brookhaven Galaxy cluster described in Table 3..2 
with 77 processors. The results are shown in Table 3.2. The 
z-force field is shown in Fig.4. 

As a second application, we implemented a MPI version 
of the tracking code Orbit[2] with FFT Poisson solver and 

Figure 4: Horizontal component of the Force. 

run it in parallel on the Galaxy. Timing results are given 
in Table 3. A number of macros exceeding 25 10’ is not 
at the present time possible due to memory limits. Linear 
performance scaling was observed with 32 processors. 
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Tab1 3: Orbit timing (wall clock) on the Galaxy. 1 
With SC No SC 

Nodes Macros/Turn time time 
per Node set set 

2 1.6 10” 1934 818 
9 0.2 10” 353 85 
17 0.1 lo6 143 42 
33 0.05 106 88 33 


