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The simlink server is an HTTP/,1.1 server which doesn’t 
serve html documents, but instead, serves the output of a 

physical simulator. A host system user defmts what simula- 
tor will be run by the server through a short simple configu- 
ration file, which can be specified at, invocation time. Since 
the server uses http protocol it is capable of sending data out 
to http clients. A library is provided with the distribution 
which allows new clients to be constructed using the simlink 
API. This paper will describe the system and. its design and 
demonstrate how it is used with BNL’s Collider Accelerator 
online modeling environment. 

I. INTRODUCTION 

The goal of the simlink project is to build a middle- 
ware substrate that transforms simulators into servers, 
giving them network communication and interprocess 
communication capabilities. This will allow us to dynam- 
ically link these applications to other applications. For 
example, this would provide trusted high quality models 
to real-time controls systems. In many cases the simu- 
lators may be legacy applications which are well trusted 
and relatively free of bugs, but do not have the capa- 
bilities of interprocess or network communication. One 
option would be to modify the simulators to give them 
these abilities. This may be done if one has access to 
the source code, but it then requires modifying all the 
simulators, and introducing new bugs and possibly com- 
promising the degree of trust in the simulator. Another 
approach is to have another applilcation which connects 
to the simulators, which sends and intercepts data to 
and from the simulator. There are various ways to do 
this. One could link directly to the simu:lators address 
space, in much the same way as a. debugger. A simpler 
approach is to just redirect the simulators input/output 
(I/O) stream. This is the approach taken in the sim- 
link project. Simlink is basically an I/O redirection sub- 
strate which allows interprocess/internetwork communi- 
cation to take place between applilcations t,hat otherwise 
wouldn’t have such capabilities. 

II. MOTIVATION 

The RHIC/AGS online modeling environment, devel- 
oped at Brookhaven National Lab’oratory (BNL) by sci- 

entis’ts in the the Collider Accelerator Department (C- 
AD), is designed to interface high quality, trusted simu- 
lations of the accelerators to the controls system running 
the accelerators [1,2]. There are many components which 
comprise the Collider Accelerators. There are four alter- 
nating gradient synchrotrons which have a range in age 
of almost 40 years, from the Alternating Gradient Syn- 
chrotron (AGS), built in 19.59, to the Relativistic Heavy 
Ion Collider (RHIC), which just became operational. The 
simlink system is designed to allow different simulation 
packages (particularly legacy applications) to be inter- 
faced uniformly to the online modeling environment. 

III. RELAT:ED WORK 

A primary goal of the RHIC/AGS online modeling en- 
vironment is to provide realistic models for automated 
beam control and shaping systems [3]. Such systems are 
necessarily complex, since they involve a union of con- 
trols systems, instrumentation, and beam physics. From 
the computer science perspective these become issues of 
uniform interfaces and protocols, database management, 
and even system architecture. Large, complex acceler- 
ators such as RHIC truly require many functions to be 
auto:mated [ 1,2]. 

One critical component to building automated control 
at the C-AD complex is the Icdev C++ library [4]. Cdev 
(common device) provides a standard interface between 
an application and one or more underlying control pack- 
ages or systems. cdev is widely used at many particle ac- 
celerator institutions, including BNL. The current model 
server at BNL interfaces to t,he controls system through 
the c:dev interface and is built as a cdev generic server. 
The dmlink server will be used at BNL to connect to the 
cdev model server and bring simulations into the sys- 
tem not previously reachable through the existing online 
modeling interface. 

IV. SYSTEM OVERVIEW 

Simlink is designed to be linked to a single simulator 
package, as specified in a very simple configuration file. 
Command line options at invocation allow specifying a 
configuration file and a socket port to allow client con- 
nections. 
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The server design was modeled on the device driver 
paradigm, with a top pa&, the request/response handler 
and a bottom part, the simulation handler. Figure 1 
shows a simplified diagram of these basic blocks. Data 
&om the simulator is put into a buffer in t,he simulation 
handler and transfered to the request/response handler 
when requested. A simulator instance is invoked via a 
request from the request/response handler. All messages 
and data that pass between the request/response handler 
and simulation handler are mediated by a single nego- 
tiator. Communication betw?n the simulation handler 
and the simulator is specified in the configuration Be and 
is either through unix sockets or named pipes. The re- 
quest/response handler communicates with the negotia- 
tor (of which it is a child) through shared memory using 
semaphore synchronizations. 

Data Flows 
From Top 
To :Bottom 
Then Back 

UP. 

[-d-l 
FIG. 1. Simlinks basic blocks 

Simlink uses a limited http/l.1 Iprotocol for thz client 
side interface. The full protocol is accepted., but not fully 
implemented. Only the subset of the protocol required to 
trigger the simulator to run and to place ar valid header 
on the response is implemented. The ability to send data 
from the server to the simulator is in place. This allows 
custom built clients to send more complicated requests 
with data. 

Simlink includes, both in design and to a limited ex- 
tent in the current implementation, various degrees of 
fault tolerance. Fault tolerance can be divided into three 
parts: error detection, classification, and actions. For er- 
ror detection every class in the system includes a private 
data member error code and a public member function 
which returns the error code. A single enumeration type 
has been built which includes all errors (all error codes 
in all the classes are of this type). The errors will be 
used for error logging and for fault detection. In the 
fault detection design each class object wiU have a cor- 
responding shared memory variable, which will contain 
the error code for that class. The total number of er- 
ror codes in shared memory is relatively small, just the 
same as the number of class objects in the server (about 

25 variables). A separate process (forked from the main 
server at start-up tin&) can monitor these variables and 
also ;periodically send test messages to the server. Clas- 
&cation of the errors will be dine in a special class in 
the testing process. The actions will be classi&d based 
on the error classiiications and will vary from deleting a 
faulty class (and re-initializing) to stopping and restart- 
ing the server. Logging of such events is critical to fixing 
bugs, and is an integral part of the error system. 

In the next version the system will be made more versa- 
tile by allowing multiple request/response handlers, and 
perhaps even multiple negotiators and simulation han- 
dlers., to allow centralized but highly flexible selection of 
simulators. The apache web :server uses a similar system 
of “virtual” connections at its top level interface [5]. The 
infrastructure for such a multiplex/demultiplex design is 
already in place in the simlink architecture. The syn- 
chronization between the multiple handlers will be imple- 
ment’ed through test variables in shared memory. This 
mechanism is already in place and being used to synchro- 
nize between the request handler and the response han- 
dler. Expanding this to allow synchronization between 
multiple request/response handlers is therefore not diffi- 
cult. The Apache server employs a similar mechanism, 
using what they call a scoreb,oard in shared memory. 

The entire system was written in C++. Currently it 
runs only on the SGI platform (IFUX 6.3), and porting 
over to Linux is almost complete. We also plan to port 
over to Solaris 2.5.1. The system, whenever possible, 
uses !POSIX standards, with the exception of the shared 
memory interface, which is S,ystem V. 

V. SYSTEM DESIGN 

Figure 2 shows the data flow model for the system, 
showi.ng the interaction between the request/response 
handler, the negotiator, and simulation handler (which is 
broken up into a simulation handler and a data handler). 
The dashed lines in the diagram demarcate the differ- 
ent processes. A boxed rectangle on top of the dashed 
line represents a communication port. The main server 
consists of the negotiator and the simulation/data han- 
dlers. The request/response handler is a child process of 
the main server. Simulator instances currently are short 
lived child processes of the main server. The module 
buffer ram is a random access memory module built into 
the server. 

2 



’ . 

B. Negotiator 

:socket~- 
._____’ - 
______I om I 

:shmJc: &, i 
:Sem ; _Requests j 

‘--__~_~_____~~_Ch_i!d_~f_M_ain~pfver 

Negotiator 1 
A-J 

______ 
; Fork& 
I Exec <_____’ 

__ 

Simulation bta 
Handler Handle) 

FIG. 2. Simlink data fl.ow model 

A. Simulation Handler 

The simulation handler keeps a private data structure 
containing the information from the configuration file. 
This data structure can be modified throu.gh a function 
call, allowing dynamic change in simulator configuration. 
The simulator specified in the configurati’on file is exe- 
cuted as a child process. The data is then read in through 
either a named pipe or a unix socket and the data handler 
puts it into the buffer ram. 

Since multiple forms of communication are being used, 
we developed an I/O class that creates a uniform inter- 
face to the I/O subsystems. This I/O class then inter- 
faces with a lower-level class for the actual interprocess 
communication. 

The higher-level I/O class is intended t#o be used by 
clients to allow a simple and uniform interface to sockets 
and pipes. A private member,uici* ps, is a pointer to the 
lower-level class uici. The uici class is a C++ version of 
the uici system described in [Robbins [S]]. We expanded 
and generalized this class using the sockets interfaces de- 
scribed in [Chan [7]] and in [Stevens [9,10]:1. 

Since the I/O interface to the simulator will not always 
be through a single file descriptor, we put the I/O objects 
into lists. The simulation handler has a pointer to the 
simulation class, which contains a Ilist of unix socket I/O 
objects and a list of fifo I/O objects. Through point- 
ers to these list objects we are able to control which file 
descriptors to use for input and output. All of these con- 
nections are defined in the configuration file and kept in 
data structures in the simulation hlandler. 
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The negotiator is encapsulated into a single class con- 
taining pointers to the simulation .handler class, to the 
requlest handler class, and to the response handler class. 
There is only a single nontrivial member function to this 
class, called pazunegotiator(). From within this function 
we make the request/response handler a child process, we 
setup the shared memory interface for communication to 
the request/response handler, and we instantiate all the 
simulation handler and data handler classes. The nego- 
tiator waits (blocking through semaphores) for a request 
to be sent from the request/response handler. It then 
sends the request down to the simulation handler and 
waits for it to complete. The data is retrieved from the 
data handler and sent back up to the response handler 
(which has been waiting for the reply back, again by sit- 
ting on a semaphore). The negotiator then goes back and 
waits for another request. Figure 
tion lof this process. 

3 shows-a representa- 
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FIG. 3. Request/Response handling process 

C. Request/Response Handler 

The request handler contains pointers to a request 
recorld class, which contains a pointer to a client connec- 
tion class. These two classes take care of all the request 
handlling, including the parsing of the http request header 
and keeping track of the socket connection data. For the 
current version, this implementation is more complicated 
then really needed, but it contains the infrastructure for 
expanding to multiple request/response handlers. 



The algorithm for taking a request and then sending 
it ba& out to the client relies on’using semaphores and 
shared memory variables to ensure the state of the re- 
quest is correct for the given operation [see Chan [7]]_ 
Although such a mechanism is not required, it is an im- 
portant building block to the more comp.licated system 
of multiple request handlers, in which synchronization is 
required. 

We ensure secure connections, as much as possi- 
ble, by not blocking on the request or response I/O. 
Non-blocking I/O is also an important building block 
to having a true multiplex/de-multiplex design [see 
Stevens [9,10]]. 

D. Simlink Protocol 

The interface to clients uses the HTTP/1.1 protocol. 
This protocol is very well defined and contains almost 
all the functionality we require. There is, a small sub- 
set of calls that we have added (calling this new protocol 
SLTP/l.O). The complete HTTP/1.1 protocol is fully de- 
scribed at the w3.org website [8]. The sltp-specific head- 
ers are defined but not completely implemented. These 
are only intended to be used by non-web browser clients, 
written specifically for communication with simlink. 

SLTP specific header calls: 

1. 

2. 

3. 

4. 

UseModel: allows specifying which simulator to 
connect to (for the next version, which will allow 
multiple simulators) 

GetData: In some instances only a s~pecif~c subset 
of the data is needed. This will allow asking for a 
specific range. 

HostUser & HostUserPID: For future authentica- 
tion. (encrypted passwords could be attached.) 

HostRetumPort: To allow cionnectionless commu- 
nication (client sends a request and then discon- 
nects to do other work. Then the server connects 
back to client, using this port.) 

W’hen a client connection is made the message is sent 
to a parser, which is a member function of the request 
record class. This parser follows the syntax and grammar 
as described in [8] (note: we do not parse the full pro- 
tocol, just the part we require, as noted in section IV). 
The following code shows a small segment, of this pars- 
ing. A token number is taken from a set of enumeration 
types, listing the full http/l.1 protocol, by cfomparing the 
various strings in the message. 

int 
SL_Read_RIJ::parserequest() 

E 
int tokennum, num; 

char *lineptr, *tokenptr; 

char de1im~="\012\014\015\040\t,:;0"; 

char delimh~=~~\012\014\0l5\040\t,;()~~; 

char *colptr=WLL; 

int hnlength=O; 

linleptr = rau_request; 

num=o; 

for(tokennum = 1; 

(tokenptr = strtok(lineptr, deli&); 

:Lineptr = NULL, tokennwn++) 

c 
if((num=slp->ismethod(tokenptr))>O) 

svitch(num) 

i 
case 1: // GET 

if(method != NULL) delete0 method; 

method = nev char[strlen(tokenptr)+l]; 

strcpy(method. tokenptr); 

method_index=num; 

,'/ request uri 

if((tokenptr = strtok(NULL. delim)) !=NULJ.) 

i 

if(uri != NULL) cleleteu uri; 

uri= nev char[strlen(tokenptr)+ll; 

strcpycuri, tokenptr); 

1 
/I’ the http/sltp version 

if((tokenptr = strtok(NULL, delim)) !=NULL) 

I 
if(protoco1 != NULL) delete0 protocol; 

protocol = new cher[strlen(tokenptr)+l]; 

strcpy(protoco1, tokenptr); 

. . . 
// parse out uhether BTTP or SLTP 

> 
break; 

case 2: // EEAID 

. . . 

We test whether the client sent an HTTP message or 
an SLTP message. For our simple grammars this parser 
works well. 

For the response message we again enumerate all 
the HTTP status codes and send out the appropri- 
ate message. Currently we send back only OK or 
BAD-REQUEST. 

E. Fault Tolerance 

The fault detection and correction system is currently 
incomplete, though the infrastructure is in place. The 
main component of the system is the error code enumer- 
ation type. 

enum P_Errori 
PAZU_OK. 

//== fatal errors 

// PAZU BOTTOM PART 

PAZU_. 

PAZlJ_RAHBEADEBBOR, 
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PAzIJ_sIMuL_, 

PAZU:SIMUL_FORK, 
PAzu_sImJL_ExEc, 
PAZU_DATA_. 1 

PIOLIST_. 
1 

P_SIMJI._, 
P_sIMJL_READcoNFIc, 
P_SIHUL_MAXARGS. 

P_sIMuL_MAxFILEs, 
. . . 

3; 

Every class contains a private member of this type. For 
example, in the main server class there are the members 
pazu_error and get_error(). 

class SL_Serveri 
private : 

// where a well known port resid.es, 

// actually does nothing 

P-10 *main-server; 

int ms_port ; 
char server-host [MAXEOSTNAKELEN+11; 
char *server_name ; 
int. hostid; 

pid_t server-parent; 

pid_t server_pid; 

uid_t server_uid; 

gid_t server_gid; 
int sportsCMaxPort1; 
int chunksize; 
// open fd of main server 
int msfd; 

P_F.rror pazu_error; 

public: 
. . . 

P_Fkror get_errorOIreturn pazu_error;); 

3; **. 

In the constructor of each class the pazu_.error variable 
is set to be PAZU_OK. Within the member functions this 
variable can be changed by non-normal events. 

F. Outstanding Issues 

The following is a list of known ‘bugs and deficiencies. 

1. 

2. 

3. 

No error logging in place yet.. 

Buffer RALM is not dynamically expandable. This 
just needs programming time to fix it ‘up so that the 
number of ram cells can be dynamically managed. 

All request messages are accepted but only a mini- 
mal amount of sanity checking is performed on in- 
coming messages. 
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The following is a list of upgrades to be included in the 
next version. 

1.. 

2. 

3. 

Fault tolerance ds described in this report will be 
fully implementeh. 

Multiple request/response handlers will be in- 
cluded. This will allow creation of multiple socket 
ports to direct messages to and relieve the bottle- 
neck of a single port. 

The complete protocol is described in section [ V D] 
will be implemented. 

VI. USERINTERFACES 

There are three user interfaces. First we describe the 
syntax of the configuration file. Second, the server takes 
a small set of command line arguments. Finally we will 
show a simple example client. 

A. Configuration File Syntax 

All1 lines beginning witlh “!” are ignored by the server. 
As a bare minimum the user must supply a pname. 
Redundant items are ignored. Keywords are: pname, 
ppath, parg, tile, and protocol. 

Configuration syntax: 

1. 

2. 

3. 

pname filename 
filename is the progTam executable and path 

ppath filepath 
filepath is the path to any program files 
the communication protocol used for these files is 
define by protocol (see below) 

parg type switch arg 
suritch and arg are the p’name executable arguments 
types are: 

in = input 
out = output 
SW = switch 
var = variable set 

if switch is set to “null”, then this is a non-switch 
argument (e.g., runpmg inputfile rather than run- 
prog -SW inputfile ) 

tile type filename protocol 
standard files used ‘by pname executable 
types are in and out, 
protocol can be file, fifo, socket: 

if file, simulator creates it, we ignore it 
if iifo, we control the pipe 
if socket, we control the pipe, opened as a 
UNIX Socket 

protocol ioprotocol 
i/o protocol link for executable 
choices are fifo, socket, or file 



Here are two examples. In the llrst example the files 
DUMP and ECHO are set to be ignored. They don’t need 
to be in the confiwation file, we .just show them in this 
example for illustration purposes. The program takes an 
argument, which is just the name of a mix socket. 

pname sock_cls 

ppath /usr/people/kbroun/laputaL/bin 

parg out null testserv 

dfile out DUMP file 

dfile out ECHO file 

protocol socket 

At the command line one might invoke this as: 
%/usr/people/kbrown/laputa/bin/sock& testserv 

In the next example pazu.print is specified twice. The 
server ignores the second one. 

pname bnlmad 

ppath /usr/people/kbrovn/bin/ 

PsrB in -da agsmad.config 

parg out -pr paxu.print 

parg out -pr paxu.print 

dfile out TUISS fifo 

dfile out ECHO file 

dfile out DUMP file 

protocol file 

At the command line one might invoke this as: 
%/usr/people/kb rown/bin/bnlmad -da agsmadconfig - 
pr pazu.print 

B. Server Invocation 

The server can be invoked with no arguments. In this 
case the default socket port used is 9669 and the default 
configuration file used is pazu.config. 

For example, to show the version and a short help mes- 
sage: 

261% simlink -v -h 

simlink v.O.1 SLTP/O.9 

Usage: simlinkc-sp number] C-scf file] C-b] C-v] 

-sp number I --socketport number 
define a neu default socket port number. 

-scf file I --simconfigfile file 
define a new simulator configuration file. 

-h I --help 
this message. 

‘V I --version 
version information. 

To stop the server a “kill -INT” signal can be sent. 
The server has a signal handler which will catch the in- 
terrupt and exit gracefully. This inlcludes all deallocation 
of data structures, killing child processes, and detaching 

6 

from share memory and semaphores. It is safe to stop 
the process with au interrupt, since care was taken to 
block interrupts during critical sections of the programs 
execjrtion (for example, when accessing share memory or 
sema.phores) . 

For example: 

// Note: signals are blocked vhile 

// accessing shared memory. 

if(rq_mess->shm_ok()) { 

sigprocmask(SIC_BLOCK,~Pnegsigset,NULL); 

rq_mess->receive((void*)clientname,&bsize. 

Bcormnunicatefd, 

(void*)currentreq, 

Ahdsixe. 

SEBVEK_BBCV, Brmtype); 
currentreq->connection->serverPsls->ms_pointerO; 

sigprocmask(SIC_UNBLOCK,Anegsigset,NULL); 

sir->setclient(clientname. bsize. communicatefd); 

C. CZlient API 

The following shows a Gmple client program, using our 
I/O class for communication. The data sent back from 
the server is then written .to st,dout. This should be linked 
to the 1ibpazu.a library, which is part of the distribution. 
A client doesn’t have to use this library to work with 
the server. It only needs to send messages in a form 
recognized by the server (HTTP l.l/SLTP). 

// 
// 
// 
// 
// 
// 
// 
// 
// 

sltpc1ient.C example of a simple simlink client 

Kevin Brown Dec. 19!39 

to run, assuming the server is located on 

nserver.xxx.yyy.zxx and is using port 

number 9669: 

% sltpclient 9663 nserver.xxx.yyy.xxx 

#include <paxu.H> 

#define BLKSIZ'B 512 

char* HSGl= 

"GET / SLTP/l.O\nConnect:ion: 

Keep-Alive\nHost: nserver.xxx.yyy.zzz\n\n"; 

int maincint argc, charat argv 0 > 

i 
int port=-1; 
int outfd; 

ssixe_t bytesread; 

ssize_t byteswritten; 

char buf[BLKSIZE]; 

memset(buf ,O, sizeof(buf)); 
if (argc < 2) i: 

fprintf(stderr. 

"Usage: Xs <port> [host] \nll, argvCO1); 
exit(l); 



. 

. 

3 
(void) sscsnf (argvcll , ?!ci”, &port> ; 
char *host=(port==-l)?argvCl] :qvC21 , socknm[8O1; 
P-IO* s_io=uea P-10( 

“socket”, 
port ! =-l?AF_INET: AF_UNIX, SOCK_STREBn) ; 

if ((outfd=s_io->p_connect (host ,]port)) CO){ 

s_io->p_error( 
“Unable to establish sn Internet Connection. “1; 

exit (1); 

1 
fprintf (stderr. 
“Client.: Connection has been made to %s\n”, 

argvc21>; 

// write uses the file descriptor contained in the 
// s_io class. This is what the -1 indicates. 
s_io->p_write(-1, MSGl, (int)st:rlen(PISGl)+l) ; 

//wait for message to come back 
rrhile( (bytesread= 

s_io->p_read(outfd. buf , sizeof (buf) 1) >l) 
{ 

tout << buf ; 
memset (buf,O,sizeof (buf)) ; 

3 
tout << endl; 
s_io->p_close(outfd); 

3 

VII. SUMMARY 

In the present implementation the system works very 
well. The testing of the system has included testing all 
the command line arguments (using a different socket 
port, using a different configuration file) and testing con- 
nections to simulators via sockets and fifos. For the bnl- 
mad simulator [1,2], which takes a few seconds to a few 
minutes to run (depending on the mode and model) the 
added latency of going through the server is very small. 
The data integrity is excellent. For the same run, using 
the bnlmad simulator, the output data taken through the 
server was identical to the data written by the simulator 
when run by itself. We have not seen any data corruption 
resulting from being filtered throug;h the server. 

Here a normal bnlmad run takes a few seconds. 

265% time bnlmad -da agsmad.confi.g 
Normal End of Program. 

1.683~ 0.225s 0:03.21 59.1% O+Ok 94+lio 53pf+Ou 

The same run, through the server takes a few seconds 
longer. This overhead is constant. When doing longer 
simulation runs, the overhead remains a few seconds. 

134ir. time bin/sltpclient 9669 nserver > runout 
Client: Connection has been made to nsener 
0.017~ 0.054s 0:06.64 0.9% O+Ok O+lio Opf+Ow 

For the BNL model server project this is a very impor- 
tant (development. The ability to connect other models 
to the control system will enable us to start working on 
automating various processes in the acdelerator that cur- 
rently cannot be automated. Additiohally we can now 
provide more precise model data to applications using 
simplistic internal models;. 
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