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The simlink server is an HTTP/1.1 server which doesn’t
serve html documents, but instead, serves the output of a
physical simulator. A host system user defines what simula-
tor will be run by the server through a short simple configu-
ration file, which can be specified at invocation time. Since
the server uses http protocol it is capable of sending data out
to http clients. A library is provided with the distribution
which allows new clients to be constructed using the simlink
APl This paper will describe the system and its design and
demonstrate how it is used with BNL’s Collider Accelerator
online modeling environment.

I. INTRODUCTION

The goal of the simlink project is to build a middle-
ware substrate that transforms simulators into servers,
giving them network communication and interprocess
communication capabilities. This will allow us to dynam-
ically link these applications to other applications. For
example, this would provide trusted high quality models
to real-time controls systems. In many cases the simu-
lators may be legacy applications which are well trusted
and relatively free of bugs, but do not have the capa-
bilities of interprocess or network communication. One
option would be to modify the simulators to give them
these abilities. This may be done if one has access to
the source code, but it then requires modifying all the
simulators, and introducing new bugs and possibly com-
promising the degree of trust in the simulator. Another
approach is to have another application which connects
to the simulators, which sends and intercepts data to
and from the simulator. There are various ways to do
this. One could link directly to the simulators address
space, in much the same way as a debugger. A simpler
approach is to just redirect the simulators input/output
(I/O) stream. This is the approach taken in the sim-
link project. Simlink is basically an I/O redirection sub-
strate which allows interprocess/internetwork communi-
cation to take place between applications that otherwise
wouldn’t have such capabilities.

II. MOTIVATION

The RHIC/AGS online modeling environment, devel-
oped at Brookhaven National Laboratory (BNL) by sci-

entists in the the Collider Accelerator Department (C-
AD), is designed to interface high quality, trusted simu-
lations of the accelerators to the controls system running
the accelerators [1,2]. There are many components which
comprise the Collider Accelerators. There are four alter-
nating gradient synchrotrons which have a range in age
of almost 40 years, from the Alternating Gradient Syn-
chrotron (AGS), built in 1959, to the Relativistic Heavy
Ion Collider (RHIC), which just became operational. The
simlink system is designed to allow different simulation
packages (particularly legacy applications) to be inter-
faced uniformly to the online modeling environment.

III. RELATED WORK

A primary goal of the RHIC/AGS online modeling en-
vironment is to provide realistic models for automated
beam control and shaping systems [3]. Such systems are
necessarily complex, since they involve a union of con-
trols systems, instrumentation, and beam physics. From
the computer science perspective these become issues of
uniform interfaces and protocols, database management,
and even system architecture. Large, complex acceler-
ators such as RHIC truly require many functions to be
automated [1,2]. '

One critical component to building automated control
at the C-AD complex is the cdev C++ library [4]. Cdev
(common device) provides a standard interface between
an application and one or more underlying control pack-
ages or systems. cdev is widely used at many particle ac-
celerator institutions, including BNL. The current model
server at BNL interfaces to the controls system through
the cdev interface and is built as a cdev generic server.
The simlink server will be used at BNL to connect to the
cdev model server and bring simulations into the sys-
tem not previously reachable through the existing online
modeling interface.

IV. SYSTEM OVERVIEW

Simlink is designed to be linked to a single simulator
package, as specified in a very simple configuration file.
Command line options at invocation allow specifying a
configuration file and a socket port to allow client con-
nections.
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handler and tra.nsfered to the request/response handler
when requested. A simulator instance is invoked via a
request from the request/response handler. All messages
and data that pass between the request/response handler
and simulation handler are mediated by a single nego-
tiator. Communication between the simulation handler
and the simulator is specified in the configuration file and
is either through unix sockets or named pipes. The re-
quest/response handler communicates with the negotia-
tor (of which it is a child) through shared memory using
semaphore synchronizations.
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FIG. 1. Simiinks basic blocks

Simlink uses a limited http/1.1 protocol for the client
side interface. The full protocol is accepted, but not fully
implemented. Only the subset of the protocol required to
trigger the simulator to run and to place a valid header
on the response is implemented. The ability to send data
from the server to the simulator is in place. This allows
custom built clients to send more complicated requests
with data.

Simlink includes, both in design and to a limited ex-
tent in the current implementation, various degrees of
fault tolerance. Fault tolerance can be divided into three
parts: error detection, classification, and actions. For er-
ror detection every class in the system includes a privaie
data member error code and a public meraber function
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used for error logging and for fault detection. In the
fault detection design each class object will have a cor-
responding shared memory variable, which will contain
the error code for that class. The total number of er-
ror codes in shared memory is relatively small, just the

same as the number of class objects in the server (about
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on the error classﬁicatlons and will vary from deleting a
faulty class (and re-initializing) to stopping and restart-
ing the server. Logging of such events is critical to fixing
bugs. and is an integral part of the error system.

In the next version the system will be made more versa-
tile by allowing multiple request/response handlers, and
perhaps even multiple negotiators and simulation han-
dlers, to allow centralized but highly flexible selection of
simulators. The apache web server uses a similar system
of “virtual” connections at its top level interface [5]. The
infrastructure for such a muitipiex/demultipiex design is
already in place in the simlink architecture. The syn-
chrornization between the xuuu,1plc handlers will be u'nple—
mented through test variables in shared memory. This

mechanism is already in place and being used to synchro-

nize between the request handler and the response han-
dler. Expanding this to allow synchronization between
multiple request /response handlers is therefore not diffi-
cult. The Apache server employs a similar mechanism,
using what they call a scoreboard in shared memory.

The entire system was written in C++. Currently it
runs only on the SGI platform (IRIX 6.3), and porting
over to Linux is almost complete. We also plan to port
over to Solaris 2.5.1. The system, whenever possible,
uses POSIX standards, with the exception of the shared
memory interface, which is System V.

V. SYSTEM DESIGN

Figure 2 shows the data flow model for the system,
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The dashed lines in the diagram demarcate the dlﬁ'er-
A boxed rectangle on top of the dashed
line represents a communication port. The main server
consists of the negotiator and the simulation/data han-
dlers. The request/response handler is a child process of
the main server. Simulator instances currently are short
lived child processes of the main server. The module
buffer ram is a random access memory module built into

the server.

ent processes.
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The simulation handler keeps a private data struct
containing the information from the configuration file.
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call, allowing dynamic change in simulator configuration.

The simulator qnpmﬁnd in the rnnﬁmlrahnn file is exe-

cuted as a child process. The data is then read in through
either a named pipe or a unix socket and the data handler
puts it into the buffer ram.

Since multiple forms of communication are being used,
we developed an I/O class that creates a uniform inter-
face to the I/O subsystems. This I/O class then inter-
faces with a lower-level class for the actual interprocess
communication.

The higher-level 1/0 class is intended to be used by
clients to allow a simple and uniform interface to sockets
and pipes. A private member,uici* ps, is a pointer to the
lower-level class uici. The uici class is a C++ version of
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and generalized this class using the sockets interfaces de-
scribed in [Chan f'ﬂ] and in [Stevens [Q.101]
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Since the 1/0 1nterface to the simulator will not always
be through a single file descriptor, we put the I/O objects
into lists. The simulation handler has a pointer to the
simulation class, which contains a list of unix socket I/O
objects and a list of fifo I/O objects. Through point-
ers to these list objects we are able to control which file
descriptors to use for input and output. All of these con-
nections are defined in the configuration file and kept in
data structures in the simulation handler.

B. Negotiator

The negotiator is encapsulated into a single class con-
taining pointers to the simulation handler class, to the
request handler class, and to the response handler class.
There is only a single nontrivial member function to this
class, called pazu_negotiator(). From within this function
we make the request/response handler a child process, we
setup the shared memory interface for communication to
the request/ response ha.ndler, and we instantiate all the
simulation handler and data handler classes. The nego-
tiator waits (blocking through semaphores) for a request
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sends the request down to the simulation handler and
waits for it to complete. The data is retrieved from the
data handler and sent back up to the response handler
(which has been waiting for the reply back, again by sit-
ting on a semaphore). The negotiator then goes back and
waits for another request. Figure 3 shows a representa-

tion of this process.
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FIG. 3. Request/Response handling process

C. Request/Response Handler

The request handler contains pointers to a request
record class, which contains a pointer to a client connec-
tion class. These two classes take care of all the request
handling, including the parsing of the http request header
and k'eeping track of the socket connection data. For the
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The algorithm for taking a request and then sending
it back out to the client relies on using semaphores and
shared memory variables to ensure the state of the re-
quest is correct for the given operation [see Chan [7]].
Although such a mechanism is not required, it is an im-
portant building block to the more complicated system
of multiple request handlers, in which synchronization is
required.

We ensure secure connections, as much as possi-
ble, by not blocking on the request or response I/0O.
Non-blocking I/O is also an important building block
to having a true multiplex/de-multiplex design [see
Stevens [9,10]].

D. Simlink Protocol

The interface to clients uses the HTTP /1.1 protocol.
This protocol is very well defined and contains almost
all the functionality we require. There is a small sub-
set of calls that we have added (calling this new protocol
SLTP/1.0). The complete HTTP/1.1 protccol is fully de-
scribed at the w3.org website [8]. The sltp-specific head-
ers are defined but not completely implemented. These
are only intended to be used by non-web browser clients,
written specifically for communication with simlink.

SLTP specific header calls:

1. UseModel: allows specifying which simulator to
connect to (for the next version, which will allow
multiple simulators)

2. GetData: In some instances only a specific subset
of the data is needed. This will allow asking for a
specific range.

3. HostUser & HostUserPID: For future authentica-
tion. (encrypted passwords could be attached.)

4. HostReturnPort: To allow connectionless commu-
nication (client sends a request and then discon-
nects to do other work. Then the server connects
back to client, using this port.)

When a client connection is made the message is sent
to a parser, which is a member function of the request
record class. This parser follows the syntax and grammar
as described in [8] (note: we do not parse the full pro-
tocol, just the part we require, as noted in section IV).
The following code shows a small segment of this pars-
ing. A token number is taken from a set of enumeration
types, listing the full http/1.1 protocol, by comparing the
various strings in the message.

int
SL_Read_RQ::parserequest ()
{
int tokennum, num;
char *lineptr, »*tokenptr;
char delim[J="\012\014\015\040\t,:;(";

char delimh[]J="\012\014\015\040\t,; ()";
char *colptr=NULL; ‘
int hnlength=0;

lineptr = raw_request;

num=0;
for(tokennum = 1;
(tokenptr = strtok(lineptr, delim));
lineptr = NULL, tokennum++)
{
if ((num=slp->ismethod (tokenptr))>0)
switch(num)
{
case 1: // GET

if (method != NULL) delete{] method;
method = new char[strlen(tokenptr)+1];
strcpy(method, tokenptr);
method_index=num;
// request uri
if ((tokenptr = strtok(NULL, delim))!=NULL)
{
if(ari != NULL) delete(] uri;
uri = new char[strlen(tokenptr)+1];
strepy(uri, tokenptr);
}
// the http/sltp version
if ((tokenptr = strtok(NULL, delim))!=NULL)
{
if(protocol != NULL) delete[] protocol;
protocol = new char{strlen(tokenptr)+1];
strcpy(protocol, - tokenptr);

// parse out whether HTTP or SLTP

}
break;

case 2: -// HEAD

We test whether the client sent an HTTP message or
an SLTP message. For our simple grammars this parser
works well.

For the response message we again enumerate all
the HTTP status codes and send out the appropri-
ate message. Currently we send back only OK or
BAD REQUEST.

E. Fault Tolerance

The fault detection and correction system is currently

.incomplete, though the infrastructure is in place. The

main component of the system is the error code enumer-
ation type.

enum P_Error{
PAZU_OK,
//=== fatal errors
// PAZU BOTTOM PART
PAZU_,
PAZU_RAMREADERROR,



PAZU_SIMUL_,
PAZU SIMUL_FORK,

P_SIMUL_MAXFILES,
};

Every class contains a private member of this type. For
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pazu_error and get_error().

class SL_Server{
private:
// vhere a well known port resides,
// actually does nothing
P_I0 *main_server;
int ms_port;
char server_host [MAXHOST
char *server_name;
int han*ld

pid_t
pid_t
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server_parent;
server_pid;
uid_t server_uid;
gid_t server_gid;
int sports[MaxPort];
int chunksize;
// open £d of main server
int msfd;

P_Error pazu_error;
public:

P_Error get_error(){return pazu_error;};

F. Outstanding Issues

The following is a list of known bugs and deficiencies.
1. No error logging in place yet.

dvnamw,ll]v gxpandnhlp This

just needs programming time to fix it up so that the
number of ram cells can be dynamically managed.

2. Buffer RAM is no

3. All request messages are accepted but only a mini-
mal amount of sanity checking is performed on in-
coming messages.

The following is a list of upgrades to be included in the
next version. '

1. Fault tolerance as described in this report will be

fully 1mnlpmpnfpd

2. Multiple request/response handlers will be in-
cluded. This will allow creation of multiple socket
ports to direct messages to and relieve the bottle-
neck of a single port.

3. The comnlete nroto
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will be implemented.

ol as described in section [ VD
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VI. USER. INTERFACES

There are three user interfaces. First we describe the
syntax of the configuration file. Second, the server takes
a small set of command line arguments. Finally we will
show a simple example client.

A. Configuration File Syntax

All lines beginning with “!” are ignored by the server.
As a bare minimum the user must supply a pname.
Redundant items are ignored. Keywords are: pname,

ppdbli, de.&, ULUU, d.ll(.l plUl/U(,Ul.
Configuration syntax:

1. pname filename
filename is the program executable and path

2. ppath filepath
filepath is the path to any program files
the communication protocol used for these files is
define by protocol (see below)
3. parg type switch arg
switch and arg are the pname executable arguments
types are:
in = input
out = output
sw = switch

var = uar‘a}'\] cot
variaoie set

if switch is set to “null”, then this is a non-switch

arcniment (e rimnnns imnatflo rathar than
al j ULl \C 5 g ! ulbyl U sivpeyjnl ia ther than

prog -sw inputfile )

™em_
T Ude

A ALRIA ¢vrenn Rlamarsa ~1
2. Ul hy pC Lucucuuc } UbUl
standard files used by pname executable

S use
tuneg are in and

types are in an
protocol can be file, fifo, socket:
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if ﬁfo we control the pipe
if socket, we control the pipe, opened as a

UNIX Socket
5. protocol ioprotocol
i/o protocol link for executable
choices are fifo, socket, or file

out
cu



Here are two examples. In the first example the files
DUMP and ECHO are set to be ignored. They don’t need
to be in the configuration file, we just show them in this
example for illustration purposes. The program takes an
argument, which is just the name of a unix socket.

gock cls

nname

pRame

ppath /usr/people/kbrown/laputa/bin
parg out null testserv

dfile out DUMP file

dfile out ECHO file

protocol socket

At the command line one might invoke this as:

% /usr/people/ kbrown/ laputa/ bin/sock cls testserv
T tha nawvt avnrmnla nacws meint 1o ananified torice Tha
441 LT LITALU Ca&a.u.lpu: PMU Plluh 1O OPTULILITU LWILT. 41T

server ignores the second one.

pname bnlmad

ppath /usr/people/kbrown/bin/
parg in -da agsmad.config
parg out -pr pazu.print

parg out -pr pazu.print
dfile out TWISS fifo

ALY o o
QlLile Vuv DUDU

dfile out DUMP file

£21 5
i1dilie

At the command line one might invoke this as:
% [usr /people/kbrown /bin/bnlmad -da agsmad.config -
pr pazu.print

B. Server Invocation

The server can be invoked with no arguments. In this
case the default socket port used is 9669 and the default
configuration file used is pazu.config.

For example, to show the version and a short help mes-

261}, simlink -v -h
simlink v.0.1 SLTP/0.9
Usage: simlink[-sp number][-scf file] (-h] [-v]
-sp number | --socketport number
define a new default socket port number.

--simconfigfile file

I A wmoare mawmslad e s
AT A uUTW oldlduldavul AL
-h | --help
&
this message.

~v | --version
version information.

To stop the server a “kill -INT” signal can be sent.
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terrupt and exit gracefully. This includes all deallocation

of data structures. killine child nrocesces. and detachine
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from share memory and semaphores. It is safe to stop
the process with an interrupt, since care was taken to
block interrupts during critical sections of the programs
execition (for example, when accessing share memory or
sem3 .phores).

For example:

// Note: signals are blocked while

// accessing shared memory.

if(rq_mess->shm_ok()) {

sigprocmask (SIG_BLOCK, énegsigset ,NULL) ;

rq.ness->receive({void*)clientname,&bsize,
&communicatefd,
(void#*)currentreq,
&hdsize,
SERVER_RECV, Srmtvpe):

SLAVER IO SIATYype/,

currentreq->connection->server=sls->ms_pointer();
sigprocmask (SIG_UNBLOCK, &negsigset,NULL) ;

slr->setclient(clientname, bsize, communicatefd);

C. Client API

The following shows a simple client program, using our
I/O class for communication. The data sent back from
the server is then written to stdout. This should be linked
to the libpazu.a library, which is part of the distribution.

~13 Ancam?sd hawsa +a 1:om mnmer o crawls weih
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the server. It only needs to send messages in a form
recognized by the server (HTTP 1.1/SLTP).

// sltpclient.C example of a simple simlink client
//
// Kevin Brown Dec.
// ’
// to run, assuming the server is located on
// nserver.xxx.yyy.zzz and is using port
// number 9669:
7/
// ’h sltpclient 9663 nserver.xxx.yyy.zzz
#include <pazu.H>
#define BLKSIZE 512
char* MSGi=
"GET / SLTP/1.0\nConnection:
Keep-Alive\nHost: nserver.xxx.yyy.zzz\n\n";

1999

int main(int argc, char* argv(])
{

int port=-1;

int outfd;

ssize_t bytesread;

ssize_t byteswritten;

char buf [BLKSIZE];

memset (buf,0,sizeof (buf));
if (arge < 2) {

IPIIBCI \stuerr »

"Usage %s <port> [host] \nr", argv[0]);



}
(void) sscanf (argv(1], "%d", &port);
char shost=(port==-1)?argv[1]:argv(2], socknm[80];
P_I0* s_io=new P_IO(
"socket",
port!=-17AF_INET:AF_UNIX,SOCK_STREAM) ;

if ((outfd=s_io->p_connect (host,port))<0){

s_io->p_error(
"Unable to establish an Internet Comnection.”);

exit(1);

}

fprintf (stderr,

"Client: Connection has been made to ¥%s\n",

argv(2]);

// write uses the file descriptor contained in the
// s_io class. This is what the ~1 indicates.
s_io->p_write(-1, MSG1l, (int)strlen(MSG1)+1);

//wait for message to come back
while((bytesread=
s_io->p_read(outfd, buf, sizeof(buf)))>1)
{
cout << buf ;
memset (buf,0,sizeof (buf));
}
cout << endl;
s_io->p_close(outfd);

}

VII. SUMMARY

In the present implementation the system works very
well. The testing of the system has included testing all
the command line arguments (using a different socket
port, using a different configuration file) and testing con-
nections to simulators via sockets and fifos. For the bnl-
mad simulator [1,2], which takes a few seconds to a few
minutes to run (depending on the mode and model) the
added latency of going through the server is very small.
The data integrity is excellent. For the same run, using
the bnlmad simulator, the output data taken through the
server was identical to the data written by the simulator
when run by itself. We have not seen any data corruption
resulting from being filtered through the server.

Here a normal bnlmad run takes a few seconds.

265/, time bnlmad -da agsmad.config
Normal End of Program.
1.683u 0.225s 0:03.21 59.1% 0+0k 94+1lio 53pf+0w

The same run, through the server takes a few seconds
longer. This overhead is constant. When doing longer
simulation runs, the overhead remains a few seconds.

1347, time bin/sltpclient 9669 nserver > runout
Client: Connection has been made to nserver
0.017u 0.054s 0:06.64 0.9% 0+0k O+lio Opf+Ow

For the BNL model server project this is a very impor-
tant development. The ability to connect other models
to the control system will enable us to start working on
autornating various processes in the accelerator that cur-
rently cannot be automated. Additioﬁally we can now
provide more precise model data to applications using
simplistic internal models.
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