
BNL - 67459

.+ Submitted to: International Computational Accelerator Physics Conference ICAP 2000
Darmstadt Germany,,9/11-14,2000

Simlink: a software substrate for physical simulations

K.A. Brown
Brookhaven National Labomtory, Upton, New York 11973-5000 1

1

Tzi-cker Chiueh
Experimental Computer Systems Laboratory, Computer Science Department, SUNY Stony Brook, Stony Brook, NY

11794-44 00

The simlink server is an HTTP/,1.1 server which doesn’t
serve html documents, but instead, serves the output of a

physical simulator. A host system user defmts what simula-
tor will be run by the server through a short simple configu-
ration file, which can be specified at, invocation time. Since
the server uses http protocol it is capable of sending data out
to http clients. A library is provided with the distribution
which allows new clients to be constructed using the simlink
API. This paper will describe the system and. its design and
demonstrate how it is used with BNL’s Collider Accelerator
online modeling environment.

I. INTRODUCTION

The goal of the simlink project is to build a middle-
ware substrate that transforms simulators into servers,
giving them network communication and interprocess
communication capabilities. This will allow us to dynam-
ically link these applications to other applications. For
example, this would provide trusted high quality models
to real-time controls systems. In many cases the simu-
lators may be legacy applications which are well trusted
and relatively free of bugs, but do not have the capa-
bilities of interprocess or network communication. One
option would be to modify the simulators to give them
these abilities. This may be done if one has access to
the source code, but it then requires modifying all the
simulators, and introducing new bugs and possibly com-
promising the degree of trust in the simulator. Another
approach is to have another applilcation which connects
to the simulators, which sends and intercepts data to
and from the simulator. There are various ways to do
this. One could link directly to the simu:lators address
space, in much the same way as a. debugger. A simpler
approach is to just redirect the simulators input/output
(I/O) stream. This is the approach taken in the sim-
link project. Simlink is basically an I/O redirection sub-
strate which allows interprocess/internetwork communi-
cation to take place between applilcations t,hat otherwise
wouldn’t have such capabilities.

II. MOTIVATION

The RHIC/AGS online modeling environment, devel-
oped at Brookhaven National Lab’oratory (BNL) by sci-

entis’ts in the the Collider Accelerator Department (C-
AD), is designed to interface high quality, trusted simu-
lations of the accelerators to the controls system running
the accelerators [1,2]. There are many components which
comprise the Collider Accelerators. There are four alter-
nating gradient synchrotrons which have a range in age
of almost 40 years, from the Alternating Gradient Syn-
chrotron (AGS), built in 19.59, to the Relativistic Heavy
Ion Collider (RHIC), which just became operational. The
simlink system is designed to allow different simulation
packages (particularly legacy applications) to be inter-
faced uniformly to the online modeling environment.

III. RELAT:ED WORK

A primary goal of the RHIC/AGS online modeling en-
vironment is to provide realistic models for automated
beam control and shaping systems [3]. Such systems are
necessarily complex, since they involve a union of con-
trols systems, instrumentation, and beam physics. From
the computer science perspective these become issues of
uniform interfaces and protocols, database management,
and even system architecture. Large, complex acceler-
ators such as RHIC truly require many functions to be
auto:mated [1,2].

One critical component to building automated control
at the C-AD complex is the Icdev C++ library [4]. Cdev
(common device) provides a standard interface between
an application and one or more underlying control pack-
ages or systems. cdev is widely used at many particle ac-
celerator institutions, including BNL. The current model
server at BNL interfaces to t,he controls system through
the c:dev interface and is built as a cdev generic server.
The dmlink server will be used at BNL to connect to the
cdev model server and bring simulations into the sys-
tem not previously reachable through the existing online
modeling interface.

IV. SYSTEM OVERVIEW

Simlink is designed to be linked to a single simulator
package, as specified in a very simple configuration file.
Command line options at invocation allow specifying a
configuration file and a socket port to allow client con-
nections.

1

The server design was modeled on the device driver
paradigm, with a top pa&, the request/response handler
and a bottom part, the simulation handler. Figure 1
shows a simplified diagram of these basic blocks. Data
&om the simulator is put into a buffer in t,he simulation
handler and transfered to the request/response handler
when requested. A simulator instance is invoked via a
request from the request/response handler. All messages
and data that pass between the request/response handler
and simulation handler are mediated by a single nego-
tiator. Communication betw?n the simulation handler
and the simulator is specified in the configuration Be and
is either through unix sockets or named pipes. The re-
quest/response handler communicates with the negotia-
tor (of which it is a child) through shared memory using
semaphore synchronizations.

Data Flows
From Top
To :Bottom
Then Back

UP.

[-d-l
FIG. 1. Simlinks basic blocks

Simlink uses a limited http/l.1 Iprotocol for thz client
side interface. The full protocol is accepted., but not fully
implemented. Only the subset of the protocol required to
trigger the simulator to run and to place ar valid header
on the response is implemented. The ability to send data
from the server to the simulator is in place. This allows
custom built clients to send more complicated requests
with data.

Simlink includes, both in design and to a limited ex-
tent in the current implementation, various degrees of
fault tolerance. Fault tolerance can be divided into three
parts: error detection, classification, and actions. For er-
ror detection every class in the system includes a private
data member error code and a public member function
which returns the error code. A single enumeration type
has been built which includes all errors (all error codes
in all the classes are of this type). The errors will be
used for error logging and for fault detection. In the
fault detection design each class object wiU have a cor-
responding shared memory variable, which will contain
the error code for that class. The total number of er-
ror codes in shared memory is relatively small, just the
same as the number of class objects in the server (about

25 variables). A separate process (forked from the main
server at start-up tin&) can monitor these variables and
also ;periodically send test messages to the server. Clas-
&cation of the errors will be dine in a special class in
the testing process. The actions will be classi&d based
on the error classiiications and will vary from deleting a
faulty class (and re-initializing) to stopping and restart-
ing the server. Logging of such events is critical to fixing
bugs, and is an integral part of the error system.

In the next version the system will be made more versa-
tile by allowing multiple request/response handlers, and
perhaps even multiple negotiators and simulation han-
dlers., to allow centralized but highly flexible selection of
simulators. The apache web :server uses a similar system
of “virtual” connections at its top level interface [5]. The
infrastructure for such a multiplex/demultiplex design is
already in place in the simlink architecture. The syn-
chronization between the multiple handlers will be imple-
ment’ed through test variables in shared memory. This
mechanism is already in place and being used to synchro-
nize between the request handler and the response han-
dler. Expanding this to allow synchronization between
multiple request/response handlers is therefore not diffi-
cult. The Apache server employs a similar mechanism,
using what they call a scoreb,oard in shared memory.

The entire system was written in C++. Currently it
runs only on the SGI platform (IFUX 6.3), and porting
over to Linux is almost complete. We also plan to port
over to Solaris 2.5.1. The system, whenever possible,
uses !POSIX standards, with the exception of the shared
memory interface, which is S,ystem V.

V. SYSTEM DESIGN

Figure 2 shows the data flow model for the system,
showi.ng the interaction between the request/response
handler, the negotiator, and simulation handler (which is
broken up into a simulation handler and a data handler).
The dashed lines in the diagram demarcate the differ-
ent processes. A boxed rectangle on top of the dashed
line represents a communication port. The main server
consists of the negotiator and the simulation/data han-
dlers. The request/response handler is a child process of
the main server. Simulator instances currently are short
lived child processes of the main server. The module
buffer ram is a random access memory module built into
the server.

2

’ .

B. Negotiator

:socket~-
._____’ -
______I om I

:shmJc: &, i
:Sem ; _Requests j

‘--__~_~_____~~_Ch_i!d_~f_M_ain~pfver

Negotiator 1
A-J

; Fork&
I Exec <_____’

__

Simulation bta
Handler Handle)

FIG. 2. Simlink data fl.ow model

A. Simulation Handler

The simulation handler keeps a private data structure
containing the information from the configuration file.
This data structure can be modified throu.gh a function
call, allowing dynamic change in simulator configuration.
The simulator specified in the configurati’on file is exe-
cuted as a child process. The data is then read in through
either a named pipe or a unix socket and the data handler
puts it into the buffer ram.

Since multiple forms of communication are being used,
we developed an I/O class that creates a uniform inter-
face to the I/O subsystems. This I/O class then inter-
faces with a lower-level class for the actual interprocess
communication.

The higher-level I/O class is intended t#o be used by
clients to allow a simple and uniform interface to sockets
and pipes. A private member,uici* ps, is a pointer to the
lower-level class uici. The uici class is a C++ version of
the uici system described in [Robbins [S]]. We expanded
and generalized this class using the sockets interfaces de-
scribed in [Chan [7]] and in [Stevens [9,10]:1.

Since the I/O interface to the simulator will not always
be through a single file descriptor, we put the I/O objects
into lists. The simulation handler has a pointer to the
simulation class, which contains a Ilist of unix socket I/O
objects and a list of fifo I/O objects. Through point-
ers to these list objects we are able to control which file
descriptors to use for input and output. All of these con-
nections are defined in the configuration file and kept in
data structures in the simulation hlandler.

3

The negotiator is encapsulated into a single class con-
taining pointers to the simulation .handler class, to the
requlest handler class, and to the response handler class.
There is only a single nontrivial member function to this
class, called pazunegotiator(). From within this function
we make the request/response handler a child process, we
setup the shared memory interface for communication to
the request/response handler, and we instantiate all the
simulation handler and data handler classes. The nego-
tiator waits (blocking through semaphores) for a request
to be sent from the request/response handler. It then
sends the request down to the simulation handler and
waits for it to complete. The data is retrieved from the
data handler and sent back up to the response handler
(which has been waiting for the reply back, again by sit-
ting on a semaphore). The negotiator then goes back and
waits for another request. Figure
tion lof this process.

3 shows-a representa-

___-__------ _-f__--

Client puts request &== -=I Client relrdh dota back
fmm waker after
re.yx~n.w handler writes

c;- I 71 y$frvm

------_-_-_-_--_ ---- __--------
When Gmulation handler
is tinnhed rhe negotiator

requests data from data

handler and \ends IO shm.
-_-----_-- _-__

__-_ --- ----..- _..___-__ ------__- /-s Simulator

FIG. 3. Request/Response handling process

C. Request/Response Handler

The request handler contains pointers to a request
recorld class, which contains a pointer to a client connec-
tion class. These two classes take care of all the request
handlling, including the parsing of the http request header
and keeping track of the socket connection data. For the
current version, this implementation is more complicated
then really needed, but it contains the infrastructure for
expanding to multiple request/response handlers.

The algorithm for taking a request and then sending
it ba& out to the client relies on’using semaphores and
shared memory variables to ensure the state of the re-
quest is correct for the given operation [see Chan [7]]_
Although such a mechanism is not required, it is an im-
portant building block to the more comp.licated system
of multiple request handlers, in which synchronization is
required.

We ensure secure connections, as much as possi-
ble, by not blocking on the request or response I/O.
Non-blocking I/O is also an important building block
to having a true multiplex/de-multiplex design [see
Stevens [9,10]].

D. Simlink Protocol

The interface to clients uses the HTTP/1.1 protocol.
This protocol is very well defined and contains almost
all the functionality we require. There is, a small sub-
set of calls that we have added (calling this new protocol
SLTP/l.O). The complete HTTP/1.1 protocol is fully de-
scribed at the w3.org website [8]. The sltp-specific head-
ers are defined but not completely implemented. These
are only intended to be used by non-web browser clients,
written specifically for communication with simlink.

SLTP specific header calls:

1.

2.

3.

4.

UseModel: allows specifying which simulator to
connect to (for the next version, which will allow
multiple simulators)

GetData: In some instances only a s~pecif~c subset
of the data is needed. This will allow asking for a
specific range.

HostUser & HostUserPID: For future authentica-
tion. (encrypted passwords could be attached.)

HostRetumPort: To allow cionnectionless commu-
nication (client sends a request and then discon-
nects to do other work. Then the server connects
back to client, using this port.)

W’hen a client connection is made the message is sent
to a parser, which is a member function of the request
record class. This parser follows the syntax and grammar
as described in [8] (note: we do not parse the full pro-
tocol, just the part we require, as noted in section IV).
The following code shows a small segment, of this pars-
ing. A token number is taken from a set of enumeration
types, listing the full http/l.1 protocol, by cfomparing the
various strings in the message.

int
SL_Read_RIJ::parserequest()

E
int tokennum, num;

char *lineptr, *tokenptr;

char de1im~="\012\014\015\040\t,:;0";

char delimh~=~~\012\014\0l5\040\t,;()~~;

char *colptr=WLL;

int hnlength=O;

linleptr = rau_request;

num=o;

for(tokennum = 1;

(tokenptr = strtok(lineptr, deli&);

:Lineptr = NULL, tokennwn++)

c
if((num=slp->ismethod(tokenptr))>O)

svitch(num)

i
case 1: // GET

if(method != NULL) delete0 method;

method = nev char[strlen(tokenptr)+l];

strcpy(method. tokenptr);

method_index=num;

,'/ request uri

if((tokenptr = strtok(NULL. delim)) !=NULJ.)

i

if(uri != NULL) cleleteu uri;

uri= nev char[strlen(tokenptr)+ll;

strcpycuri, tokenptr);

1
/I’ the http/sltp version

if((tokenptr = strtok(NULL, delim)) !=NULL)

I
if(protoco1 != NULL) delete0 protocol;

protocol = new cher[strlen(tokenptr)+l];

strcpy(protoco1, tokenptr);

. . .
// parse out uhether BTTP or SLTP

>
break;

case 2: // EEAID

. . .

We test whether the client sent an HTTP message or
an SLTP message. For our simple grammars this parser
works well.

For the response message we again enumerate all
the HTTP status codes and send out the appropri-
ate message. Currently we send back only OK or
BAD-REQUEST.

E. Fault Tolerance

The fault detection and correction system is currently
incomplete, though the infrastructure is in place. The
main component of the system is the error code enumer-
ation type.

enum P_Errori
PAZU_OK.

//== fatal errors

// PAZU BOTTOM PART

PAZU_.

PAZlJ_RAHBEADEBBOR,

4

PAzIJ_sIMuL_,

PAZU:SIMUL_FORK,
PAzu_sImJL_ExEc,
PAZU_DATA_. 1

PIOLIST_.
1

P_SIMJI._,
P_sIMJL_READcoNFIc,
P_SIHUL_MAXARGS.

P_sIMuL_MAxFILEs,
. . .

3;

Every class contains a private member of this type. For
example, in the main server class there are the members
pazu_error and get_error().

class SL_Serveri
private :

// where a well known port resid.es,

// actually does nothing

P-10 *main-server;

int ms_port ;
char server-host [MAXEOSTNAKELEN+11;
char *server_name ;
int. hostid;

pid_t server-parent;

pid_t server_pid;

uid_t server_uid;

gid_t server_gid;
int sportsCMaxPort1;
int chunksize;
// open fd of main server
int msfd;

P_F.rror pazu_error;

public:
. . .

P_Fkror get_errorOIreturn pazu_error;);

3; **.

In the constructor of each class the pazu_.error variable
is set to be PAZU_OK. Within the member functions this
variable can be changed by non-normal events.

F. Outstanding Issues

The following is a list of known ‘bugs and deficiencies.

1.

2.

3.

No error logging in place yet..

Buffer RALM is not dynamically expandable. This
just needs programming time to fix it ‘up so that the
number of ram cells can be dynamically managed.

All request messages are accepted but only a mini-
mal amount of sanity checking is performed on in-
coming messages.

5

The following is a list of upgrades to be included in the
next version.

1..

2.

3.

Fault tolerance ds described in this report will be
fully implementeh.

Multiple request/response handlers will be in-
cluded. This will allow creation of multiple socket
ports to direct messages to and relieve the bottle-
neck of a single port.

The complete protocol is described in section [V D]
will be implemented.

VI. USERINTERFACES

There are three user interfaces. First we describe the
syntax of the configuration file. Second, the server takes
a small set of command line arguments. Finally we will
show a simple example client.

A. Configuration File Syntax

All1 lines beginning witlh “!” are ignored by the server.
As a bare minimum the user must supply a pname.
Redundant items are ignored. Keywords are: pname,
ppath, parg, tile, and protocol.

Configuration syntax:

1.

2.

3.

pname filename
filename is the progTam executable and path

ppath filepath
filepath is the path to any program files
the communication protocol used for these files is
define by protocol (see below)

parg type switch arg
suritch and arg are the p’name executable arguments
types are:

in = input
out = output
SW = switch
var = variable set

if switch is set to “null”, then this is a non-switch
argument (e.g., runpmg inputfile rather than run-
prog -SW inputfile)

tile type filename protocol
standard files used ‘by pname executable
types are in and out,
protocol can be file, fifo, socket:

if file, simulator creates it, we ignore it
if iifo, we control the pipe
if socket, we control the pipe, opened as a
UNIX Socket

protocol ioprotocol
i/o protocol link for executable
choices are fifo, socket, or file

Here are two examples. In the llrst example the files
DUMP and ECHO are set to be ignored. They don’t need
to be in the confiwation file, we .just show them in this
example for illustration purposes. The program takes an
argument, which is just the name of a mix socket.

pname sock_cls

ppath /usr/people/kbroun/laputaL/bin

parg out null testserv

dfile out DUMP file

dfile out ECHO file

protocol socket

At the command line one might invoke this as:
%/usr/people/kbrown/laputa/bin/sock& testserv

In the next example pazu.print is specified twice. The
server ignores the second one.

pname bnlmad

ppath /usr/people/kbrovn/bin/

PsrB in -da agsmad.config

parg out -pr paxu.print

parg out -pr paxu.print

dfile out TUISS fifo

dfile out ECHO file

dfile out DUMP file

protocol file

At the command line one might invoke this as:
%/usr/people/kb rown/bin/bnlmad -da agsmadconfig -
pr pazu.print

B. Server Invocation

The server can be invoked with no arguments. In this
case the default socket port used is 9669 and the default
configuration file used is pazu.config.

For example, to show the version and a short help mes-
sage:

261% simlink -v -h

simlink v.O.1 SLTP/O.9

Usage: simlinkc-sp number] C-scf file] C-b] C-v]

-sp number I --socketport number
define a neu default socket port number.

-scf file I --simconfigfile file
define a new simulator configuration file.

-h I --help
this message.

‘V I --version
version information.

To stop the server a “kill -INT” signal can be sent.
The server has a signal handler which will catch the in-
terrupt and exit gracefully. This inlcludes all deallocation
of data structures, killing child processes, and detaching

6

from share memory and semaphores. It is safe to stop
the process with au interrupt, since care was taken to
block interrupts during critical sections of the programs
execjrtion (for example, when accessing share memory or
sema.phores) .

For example:

// Note: signals are blocked vhile

// accessing shared memory.

if(rq_mess->shm_ok()) {

sigprocmask(SIC_BLOCK,~Pnegsigset,NULL);

rq_mess->receive((void*)clientname,&bsize.

Bcormnunicatefd,

(void*)currentreq,

Ahdsixe.

SEBVEK_BBCV, Brmtype);
currentreq->connection->serverPsls->ms_pointerO;

sigprocmask(SIC_UNBLOCK,Anegsigset,NULL);

sir->setclient(clientname. bsize. communicatefd);

C. CZlient API

The following shows a Gmple client program, using our
I/O class for communication. The data sent back from
the server is then written .to st,dout. This should be linked
to the 1ibpazu.a library, which is part of the distribution.
A client doesn’t have to use this library to work with
the server. It only needs to send messages in a form
recognized by the server (HTTP l.l/SLTP).

//
//
//
//
//
//
//
//
//

sltpc1ient.C example of a simple simlink client

Kevin Brown Dec. 19!39

to run, assuming the server is located on

nserver.xxx.yyy.zxx and is using port

number 9669:

% sltpclient 9663 nserver.xxx.yyy.xxx

#include <paxu.H>

#define BLKSIZ'B 512

char* HSGl=

"GET / SLTP/l.O\nConnect:ion:

Keep-Alive\nHost: nserver.xxx.yyy.zzz\n\n";

int maincint argc, charat argv 0 >

i
int port=-1;
int outfd;

ssixe_t bytesread;

ssize_t byteswritten;

char buf[BLKSIZE];

memset(buf ,O, sizeof(buf));
if (argc < 2) i:

fprintf(stderr.

"Usage: Xs <port> [host] \nll, argvCO1);
exit(l);

.

.

3
(void) sscsnf (argvcll , ?!ci”, &port> ;
char *host=(port==-l)?argvCl] :qvC21 , socknm[8O1;
P-IO* s_io=uea P-10(

“socket”,
port ! =-l?AF_INET: AF_UNIX, SOCK_STREBn) ;

if ((outfd=s_io->p_connect (host ,]port)) CO){

s_io->p_error(
“Unable to establish sn Internet Connection. “1;

exit (1);

1
fprintf (stderr.
“Client.: Connection has been made to %s\n”,

argvc21>;

// write uses the file descriptor contained in the
// s_io class. This is what the -1 indicates.
s_io->p_write(-1, MSGl, (int)st:rlen(PISGl)+l) ;

//wait for message to come back
rrhile((bytesread=

s_io->p_read(outfd. buf , sizeof (buf) 1) >l)
{

tout << buf ;
memset (buf,O,sizeof (buf)) ;

3
tout << endl;
s_io->p_close(outfd);

3

VII. SUMMARY

In the present implementation the system works very
well. The testing of the system has included testing all
the command line arguments (using a different socket
port, using a different configuration file) and testing con-
nections to simulators via sockets and fifos. For the bnl-
mad simulator [1,2], which takes a few seconds to a few
minutes to run (depending on the mode and model) the
added latency of going through the server is very small.
The data integrity is excellent. For the same run, using
the bnlmad simulator, the output data taken through the
server was identical to the data written by the simulator
when run by itself. We have not seen any data corruption
resulting from being filtered throug;h the server.

Here a normal bnlmad run takes a few seconds.

265% time bnlmad -da agsmad.confi.g
Normal End of Program.

1.683~ 0.225s 0:03.21 59.1% O+Ok 94+lio 53pf+Ou

The same run, through the server takes a few seconds
longer. This overhead is constant. When doing longer
simulation runs, the overhead remains a few seconds.

134ir. time bin/sltpclient 9669 nserver > runout
Client: Connection has been made to nsener
0.017~ 0.054s 0:06.64 0.9% O+Ok O+lio Opf+Ow

For the BNL model server project this is a very impor-
tant (development. The ability to connect other models
to the control system will enable us to start working on
automating various processes in the acdelerator that cur-
rently cannot be automated. Additiohally we can now
provide more precise model data to applications using
simplistic internal models;.

ACKNOWLEDGMENTS

Th:ls work was supported by the U.S. Department of
Energy. We wish to thank Todd Satogata (BNL C-AD)
for offering valuable advice and stimulating discussions.

PI

I31

PI

[51

PI

[71

PI

PI

K.Brown et al, “The R,HIC/AGS Online Model Envi-
ronments: Experiences and Design for AGS Modeling”,
1!199 US Particle Accelerator Conference Proceedings.
No. 2722
http://pac99.bnl.gov/
T.Satogata et al, “The RHIC/AGS Online Model En-
vironments: Design and Overview.“, 1999 US Particle
Accelerator Conference Proceedings. No. 2728
http://pac99.bnl.gov/
See the Automated Beam Steering and Shaping home
page at CERN:
http:/ /www.cern.ch/AI3S/
See the main cdev web page at Jefferson Lab.:
http://www.jlab.org/cd.ev/
The Apache Software Foundation main web page is found
at:
hi,tp://www.apache.org/
“Practical Unix Programming: A Guide to Concurrency,
C’3mmunicatioq and Multithreading”, K.Robbins and
S.Robbins, Prentice Hall PTR, 1996.
IS’BN o-13-443706-3
“UNIX System Programming Using C+-i-“, T. Ghan,
Prentice Hall PTR, 1997.
ISBN O-13-331562-2
See RFC 2616 for a com.plete description of http/l.1 pro-
tocol.
http://www.w3.org
“unix Network Programming, Networking API: Sockets
and .XTI”, Volume 1 2nd Ed., W&chard Stevens, Pren-
tice Hall PTR, 1998.
ISBN 0-13-490012-X

[lo] “unix Network Programming, Interprocess Communica-
tions”, Volume 2 2nd Eid., W&chard Stevens, Prentice
H,dl PTR, 1999.
ISBN O-13-081081-9

