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information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights.  Reference herein to any specific commercial product, 
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United States Government or any agency thereof or its contractors or subcontractors.  
The views and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof. 
 
Synchrotron Sources 



  

 
S. L. Hulbert and G. P. Williams, National Synchrotron Light Source, 
Brookhaven National Laboratory 
 
Synchrotron radiation is a very bright, broadband, polarized, pulsed source of 
electromagnetic radiation extending from the infrared to the x-ray region. 
Brightness, defined as flux per unit area per unit solid angle, is normally a more 
important quantity than flux or intensity, particularly in throughput limited 
applications which include those in which monochromators are used. 
 
It is well known from classical theory of electricity and magnetism that 
accelerating charges emit electromagnetic radiation.  In the case of synchrotron 
radiation, relativistic electrons are accelerated in a circular orbit and emit 
electromagnetic radiation in a broad spectral range.  The visible portion of this 
spectrum was first observed on April 24, 1947 at General Electric’s Schenectady 
facility by Floyd Haber, a machinist working with the synchrotron team, although 
the first theoretical predictions were by Liénard1 in the latter part of the 1800’s.  
An excellent early history with references is presented by Blewett2 and a history 
covering the development of the utilization of synchrotron radiation is presented 
by Hartman3. 
Synchrotron radiation covers the entire electromagnetic spectrum from the 
infrared region through the visible, ultraviolet, and into the x-ray region up to 
energies of many 10’s of kilovolts.  If the charged particles are of low mass, such 
as electrons, and if they are traveling relativistically, the emitted radiation is very 
intense and highly collimated, with opening angles, which depend inversely on 
the energy of the particle, on the order of 1 milliradian.  In electron storage rings 
there are two distinct types of sources of synchrotron radiation: dipole (bending) 
magnets and insertion devices.  Insertion devices are further classified as either 
wigglers, which act like a sequence of bending magnets with alternating 
polarities, or undulators, which are also multi-period alternating magnet systems 
but in which the beam deflections are small resulting in coherent interference of 
the emitted light. 
In typical storage rings used as synchrotron radiation sources, several bunches 
of up to ~ 1012 electrons circulate in vacuum, guided by magnetic fields.  The 
bunches are typically several 10’s of centimeters long, so that the light is pulsed, 
being on for a few 10’s to a few 100’s of picoseconds, and off for several 10’s to 
a few 100’s of nanoseconds depending on the particular machine and the radio-
frequency cavity which restores the energy lost to synchrotron radiation.  For 
example, the revolution time for a ring of circumference 30m is 100ns, so that 
each bunch of 1012 electrons is seen 107 times per second, giving a current of  
~1 Ampere. 
The most important characteristic of accelerators built specifically as synchrotron 
radiation sources is that they have a magnetic focusing system which is 
designed to concentrate the electrons into bunches of very small cross-section 
and to keep the electron transverse velocities small.  The combination of high 



  

intensity with small opening angles and small source dimensions results in the 
very high brightness. 
The first synchrotron radiation sources to be used were operated parasitically on 
existing high energy physics or accelerator development programs.  These were 
not optimized for brightness, and were usually accelerators rather than storage 
rings, meaning that the electron beams were constantly being injected, 
accelerated and extracted.  Owing to the successful use of these sources for 
scientific programs, a second generation of dedicated storage rings was built 
starting in the early 1980’s.  In the mid 1990’s, a third generation of sources was 
built, this time based largely on insertion devices, especially undulators of 
various types.  A fourth generation is also under development based on what is 
called multiparticle coherent emission, in which coherence along the path of the 
electrons, or longitudinal coherence, plays the major role.  This is achieved by 
microbunching the electrons on a length scale comparable to or smaller than the 
scale of the wavelengths emitted.  The emission is then proportional to the 
square of the number of electrons, N, which, if N is 1210 , can be a very large 
enhancement.  These sources can reach the theoretical diffraction limit of 
source emittance (the product of solid angle and area). 
 
Theory of Synchrotron Radiation Emission 
 
General 
 
The theory describing synchrotron radiation emission is based on classical 
electrodynamics and can be found in the works of Tomboulian and Hartman4 
(1956), Schwinger5 (1949), Jackson6 (1975), Winick7 (1980), Hofmann8 (1980), 
Krinsky, Perlman and Watson9 (1983) and Kim10 (1989).  A quantum description, 
presented by Sokolov and Ternov11(1968), is quantitavely equivalent. 
Here we present a phenomenological description in order to highlight the 
general concepts involved.  Electrons in circular motion radiate in a dipole 
pattern as shown schematically in Fig. 1a.  As the electron energies increase 
and the particles start traveling at relativistic velocities, this dipole pattern 
appears different to an observer in the rest frame of the laboratory. Special 
relativity tells us that angles θt in a transmitting object are related to those in the 
receiving frame, θr, by 

)(cos
sin

tan
t

t
r β−θγ

θ=θ                    (1) 

 
with γ, the ratio of the mass of the electron to its rest mass, being given by 
E/moc2, E being the electron energy, mo the electron rest mass and c the velocity 
of light. β is the ratio of electron velocity, v, to the velocity of light, c.  Thus for 
electrons at relativistic energies, β ≈ 1 so the peak of the dipole emission pattern 
in the particle frame, θt=90o, transforms to θr ≈ tan θr ≈ γ -1 in the laboratory frame 
as shown in Fig. 1b.  Thus γ -1 is a typical opening angle of the radiation in the 



  

laboratory frame.  For an electron viewed in passing by an observer, as shown in 
Fig. 2, the duration of the pulse produced by a particle under circular motion of 
radius ρ will be ρ/γc in the particle frame, or ρ/γc x 1/γ2 in the laboratory frame 
owing to time dilation.  The Fourier transform of this function will contain 
frequency components up to the reciprocal of this time interval.  For a storage 
ring with a radius of 2 meters and γ = 1000, corresponding to a stored electron 
beam energy of ∼  500 MeV, the time interval is 10-17 seconds, which corresponds 
to light of wavelength 30 Å. 
 
 
Bending Magnet Radiation 
 
For an electron storage ring, the relationship between the electron beam energy 
E, bending radius ρ, and field B is 
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The critical frequency and photon energy are 
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The angular distribution of synchrotron radiation flux emitted by electrons 
moving through a bending magnet with a circular trajectory in the horizontal 
plane is given9 by 
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where θ is the observation angle in the horizontal plane, ψ  the observation angle 
in the vertical plane, α the fine structure constant (1/137), ω the light frequency, I 
the beam current, and ξ = (ω/2ωc)(1+ γ2ψ 2)3/2.  The subscripted K’s are modified 
Bessel functions of the second kind.  The 3/2K  term represents light linearly 
polarized parallel to the electron orbit plane, while the 3/1K  term represents light 
linearly polarized perpendicular to the orbit plane. 
If one integrates over all vertical angles, then the total intensity is 
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The Bessel functions can be computed easily using algorithms of Kostroun12: 







 ν+= ∑

∞

=

−
−

ν
1r

)rhcosh(x
x

)rhcosh(e
2

e
h)x(K         (7) 

and 







 ν+=ηη ∑∫

∞

=

−
−∞

ν
1r

)rhcosh(x
x

x )rhcosh(
)rhcosh(

e
2

e
hd)(K         (8) 

for all x and for any fractional order ν, where h is some suitable interval such as 
0.5.  In evaluating the series, the sum is terminated when the rth. term is small, 
<10-5 for example. 

In Fig. 3 we plot the universal function dy)y(KG

c

3/5
cc

1 ∫
∞

ω
ωω

ω=




ω
ω  from Eq. 6, so 

that the photon energy dependence of the  flux from a given ring can be 

calculated readily.  It is found that the emission falls off exponentially as e-λc/λ for 
wavelengths shorter than λc, but only as λ-1/3 at longer wavelengths. 
 
The vertical angular distribution is more complicated.  For a given ring and 
wavelength, there is a characteristic natural opening angle for the emitted light.  
The opening angle increases with increasing wavelength.  If we define ψ  as the 
vertical angle relative to the orbital plane, and if the vertical angular distribution 
of the emitted flux is assumed to be Gaussian in shape, then the rms divergence 
σψ  is defined as π21 times the ratio of Eqs. 6/5 evaluated at ψ  =0: 
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In reality, the distribution is not Gaussian, especially in view of the fact that the 
distribution for the vertically polarized component vanishes in the horizontal 
plane (ψ  =0).  However, σψ  defined by Eq. 9 is still a simple and useful measure 
of the angular divergence.  The photon energy (ω) dependence of the electron-
energy-independent quantity ψγσ  is plotted in Fig. 4.  At ω=ωc, σψ  = 0.647/γ.  The 
asymptotic values of σψ  can be obtained from the asymptotic values of the 
Bessel functions and are 
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In Fig. 5 we show examples of the normalized vertical angular distributions of 
both parallel and perpendicularly polarized synchrotron radiation for a selection 
of wavelengths. 
 
Circular Polarization and Aperturing for Magnetic Circular Dichroism 
 
Circularly polarized radiation is a valuable tool for the study of electronic, 
magnetic, and geometric structure of a wide variety of materials.  The dichroic 
response in the soft x-ray spectral region (100-1500eV) is especially important 
because in this energy range almost every element has a strong dipole transition 
from a sharp core level to its lowest unoccupied state13. 
 
The production of bright sources of circularly polarized soft x-rays is therefore a 
topic of keen interest, and is a problem which has seen a multitude of solutions, 
from special insertion devices (crossed undulators, helical undulators, elliptically 
polarized undulators/wigglers) to optical devices (multiple-bounce 
reflectors/multilayers and quarter-wave plates).  However, standard bending 
magnet synchrotron radiation sources are good sources of elliptically polarized 
soft x-rays when viewed from either above or below the orbital plane. 
 
As discussed by Chen13, a practical solution involves acceptance of a finite 
vertical angular range, ψ off  - ∆ψ /2 < ψ  < ψ off  + ∆ψ /2 centered about any vertical 
offset angle ψ  = ψ off  or, equivalently, about ψ  = -ψ off.  This slice of bending 
magnet radiation exhibits a circular polarization14 
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square-roots of the horizontally and vertically polarized components of bending 
magnet flux (Eq. 5), i.e Ah and Av are proportional to the horizontal and vertical 
components of the electric field, respectively.  Pc depends on the vertical angle 
ψ , electron energy γ and, through ξ, the emitted photon energy ω/ωc.  In Fig. 6 
we plot values of Pc vs γψ  and ω/ωc for γ=1565 (E=0.8GeV) and ρ=1.91m 
(hνcrit=594 eV). 
 
Magnetic circular dichroism (MCD) measures the normalized difference of the 
absorption of right circular and left circular light.  Assuming no systematic error, 
the signal to noise ratio in such a measurement defines a figure of merit 
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and the fraction of the total (vertically-integrated) flux emitted into the vertical  
slice ψ  = ψ off  ± ∆ψ /2 is: 
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Here d2Fbm(ω)/dθdψ  is the angular dependence of the bending magnetic flux 
from Eq. 5 and dFbm(ω)/dθ is the vertically integrated flux from Eq. 6.  For an 0.8 
GeV storage ring (e.g. the VUV ring at the National Synchrotron Light Source 
(NSLS), Upton, NY USA), the best choices of ψ  and ∆ψ  are 0.5 mrad and 0.66 
mrad respectively.  This yields a flux fraction ~ 0.3, a circular polarization ~ 0.65 
and a figure of merit ~ 0.35. 
 
Bending Magnet Power 
 
Integration of ( ) ( )ψθωω dd)(FdeI bm

2h  from Eq. 5 over all frequencies ω yields the 
angular distribution of power radiated by a bending magnet: 
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which is independent of the horizontal angle θ as required by symmetry, and  the 
vertical angular dependence is contained in the factor 
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The first term in F(γψ ) represents the component of the bending magnet 
radiation parallel to the orbital plane, while the second represents the 



  

perpendicular polarization component. F(γψ ) and its polarization components 
are plotted vs γψ  in Fig. 7.  Note that the area under the Fparallel curve is 
approximately seven times greater than that for Fperpendicular. 
 
Integrating Eq. 17 over the out-of-orbital-plane (vertical) angle ψ  yields the total 
power radiated per unit in-orbital-plane (horizontal) angle θ: 
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For example, a 1.0 GeV storage ring with 2 m radius bends generates 7.04 
W/mrad per Amp of stored current.  By contrast, a 2.5 GeV machine with 7 m 
radius bends generates 78.6 W/mrad/A and a 7 GeV machine with 39 m radius 
bends generates 867 W/mrad/A.  
 
Bending Magnet Brightness. 
 
Thus far we have calculated the emitted flux in photons per second per 
milliradian2 of solid angle.  In order to calculate the brightness we need to 
include the source size.  In these calculations we calculate the central (or 
maximum) brightness, for which we use the natural opening angle to define both 
the horizontal and vertical angles.  Using vertical angles larger than this will not 
increase the flux as there is no emission.  Using larger horizontal angles will 
increase the flux proportionately as all horizontal angles are filled with light, but 
owing to the curvature of the electron trajectory, the average brightness will 
actually be less.  The brightness expression15,16 is: 
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εx and εy are the electron beam emittances in the horizontal and vertical 
directions respectively, βx and βy are the electron beam beta functions in the 
horizontal and vertical planes, ηx is the dispersion function in the horizontal 
plane and σE is the rms value of the relative energy spread.  All the electron 
beam parameters are properties of a particular storage ring.  The diffraction 
limited source size is σr=λ/4πσψ .  The effective source sizes ( x∑  and y∑ ) are 

photon energy dependent via the natural opening angle σψ  and the diffraction 
limited source size σr. 
 



  

Insertion Devices (Undulators and Wigglers) 
 
General 
Insertion devices are periodic magnetic structures installed in straight sections of 
storage rings, as illustrated in Fig. 8, in which the vertical magnetic field varies 
approximately sinusoidally along the axis of the undulator.  The resulting motion 
of the electrons is also approximately sinusoidal, but in the horizontal plane. One 
can understand the nature of the spectra emitted from these devices by again 
studying the electric field as a function of time, and this is shown in Fig. 9.  This 
shows that the electric field and hence its Fourier transform, the spectrum, 
depend critically on the magnitude of the beam deflection in the device.  At one 
extreme, when the magnetic fields are high, as in Fig. 9a, the deflection is large 
and the electric field is a series of pulses similar to those obtained from a dipole.  
Such a device is termed a “wiggler”.  The Fourier transform for the wiggler is N 
times that from a single dipole.  At the other extreme, as in Fig. 9b, the deflection 
of the electron beam is such that the electric field as a function of time is 
sinusoidal, and the Fourier transform is then a single peak with a width 
proportional to the inverse of the length of the wavetrain, L*, according to 
λ2/∆λ=L*.  L* is obtained by dividing the real length of the device, L, by γ2 
because of relativistic effects.  Thus for a meter long device emitting at a 
wavelength λ = 10 nm in a machine of energy 0.5 GeV (γ ~ 1000), we get λ2/∆λ = 
10-6 meters, and λ/∆λ = 1000.  Interference occurs in an undulator since the 
electric field from one part of the electron path is added coherently to that from 
adjacent parts. 
 
Formal Treatment 
We assume that the motion of an electron in an insertion device is sinusoidal, 
and that we have a magnetic field in the vertical (y) direction varying periodically 
along the z direction, with 

)/z2sin(BB uoy λπ−= , uNz0 λ≤≤     (21) 
where B0 is the peak magnetic field, λu is the period length, and N the number of 
periods.  By integrating the equation of motion, the electron transverse velocity 
cβx is found to be 
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is a dimensionless parameter which is proportional to the deflection of the 

electron beam.  The maximum slope of the electron trajectory is 
γ

=δ K
.  In terms 

of δ, we define an undulator as a device in which 1−γ≤δ , which corresponds to 
K ≤1.  When K is large, the device is called a wiggler.  In most insertion devices 



  

the field can be changed either electromagnetically or mechanically, and in 
some cases K can vary between the two extremes of undulator and wiggler 
operation. 
 
Wigglers 
 
For the wiggler, the flux distribution is given by 2N (where N is the number of 
magnetic periods) times the appropriate bending magnet formulae in Eqs. 5 and 
6.  However, ρ or B must be taken at the point in the path of the electron which is 
tangent to the direction of observation.  For a horizontal angle θ, 
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from Eq. 4.  Integration over θ, which is usually performed numerically, gives the 
wiggler flux. 
 
The calculation of the brightness of wigglers needs to take into account the 
depth-of-field effects, i.e the contribution to the apparent source size from 
different poles.  The expression for the brightness of wigglers is: 
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nz wn , λw is the wiggler period, and σψ  is identical to Eq. 9, but 

evaluated, in the wiggler case, as the instantaneous radius at the tangent to the 
straight-ahead (θ=ψ =0) direction (i.e. minimum ρ, maximum εc), xxx βε=σ  and 

yyy βε=σ  are the rms transverse beam sizes, while xxx /βε=σ′  and 

yyy /βε=σ′  are the angular divergences of the electron beam in the horizontal 

and vertical directions respectively.  The exponential factor in Eq. 26 arises 
because wigglers have two source points separated by 2xo, where 
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The summations in Eq. 34 must be performed for each photon energy because 
σψ  is photon energy dependent. 
 



  

Undulators 
 
The interference which occurs in an undulator, i.e. when K is moderate ( 1K ≤ ), 
produces sharp peaks in the forward direction at a fundamental (n=1) and all 
odd harmonics (n=3,5,7… ) as shown for a zero emittance (ε=0) electron beam in 
Fig. 10(a) (dotted line).  In the ε=0 case, the even harmonics (n=2,4,6,...) peak 
off-axis and do not appear in the forward direction.  For real (ε ≠ 0) electron 
beams, the spectral shape, angular distribution, and peak brightness are 
strongly dependent on the emittance and energy spread of the electron beam as 
well as the period and magnitude of the insertion device field. 
 
In general, the effect of electron beam emittance is to cause all harmonics to 
appear in the forward direction (solid line in Fig. 10(a)).  The effect of angle 
integration on the spectrum in Fig. 10(a) is shown in Fig. 10(b), a spectrum 
which is independent of electron beam emittance except for the presence of 
"noise" in the zero emittance case.  The effect of electron beam emittance on the 
angular distribution of the fundamental, second, and third harmonics of this 
device is shown in Fig. 10(c), which also nicely demonstrates the dependence 
on harmonic number. 
 
The peak wavelengths of the emitted radiation, λn, are given by 
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where λu is the undulator period length.  They soften as the square of the 
deviation angle θ away from the forward direction. 
Of main interest is the intense central cone of radiation.  An approximate formula 
for flux integrated over the central cone is (for the odd harmonics) 
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To calculate the undulator flux angular distribution and spectral output into 
arbitrary solid angle, one can use freely available codes such as Urgent17 (R. P.  



  

Walker and B. Diviacco).  To include magnetic field errors (e.g. measured 
values), use Ur18 (R. J. Dejus and A. Luccio) or SRW19 (O. Chubar and P. 
Elleaume). 
 
The brightness of an undulator, Bu,  is approximated by dividing the central cone 
flux by the effective angular divergence, )( yx ∑ ′∑ ′ , and by the effective source 
size, )( yx ∑∑ , in the horizontal (vertical) directions.  These are given by 
convolution of the Gaussian distributions of the electron beam and the diffraction 
limited photon beam, in both space and angle: 
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Thus, Bu is given by 
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The diffraction limited emittance of a photon beam is the minimum value in the 
inequality 

π
λ=λ≥σσ=ε ′ 42rr       (35) 

where ε is the photon emittance and λ is the wavelength, in direct analogy to the 
Heisenberg uncertainty principle in non-relativistic quantum mechanics.  The 
space versus angle separation of this minimum emittance is energy and 
harmonic dependent20.  For the exact harmonic frequency in the forward 
direction, given by Eq. 28 with θ=0, there appears to be consensus that σr and σr’ 
are given by 
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On the other hand, at the peak of the angle-integrated undulator spectrum, 
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It is clear from Eqs. 32 and 33 that the choice of expression for σr and σr’ can 
have a non-negligible effect on the undulator brightness value especially for 
small beam size and opening angle.  Lacking a functional form for σr and σr’ as a 
function of photon energy, we shall use Eq. 37 in evaluating the expression for 
undulator peak spectral brightness from Eq. 34. 



  

 
Insertion device power 
 
The Schwinger5 formula for the distribution of radiated power from an electron in 
a sinusoidal trajectory, which applies with reasonable approximation to 
undulators and, to a lesser extent, wigglers, reduces21 to 
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where the total (angle-integrated) radiated power is 
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N is the number of undulator or wiggler periods, Z0 is the vacuum impedance 
(377Ω ), I is the storage ring current, e is the electronic charge, c is the speed of 
light, L = Nλu is the length of the insertion device, 
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where 

222 )cosK(1D α−γθ+ψγ+= .     (42) 
 
The integral in the expression for fK is best evaluated numerically. 
 
For K>1, which includes all wigglers and much of the useful range of undulators, 
an approximate formula for the angle dependence of the radiated power is 
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where F(γψ ) is the bending magnet formula from Eq. 17.  This form clearly 
indicates the strong weakening of insertion device power as θ increases, 
vanishing at θ = ±K/γ . 
 
Since  fK(0,0) is normalized to unity, the radiated power density in the forward 
direction (i.e. along the undulator axis) is 
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Polarization of undulators and wigglers. 
 
The polarization properties of the light emitted by wigglers, is similar to that of 
dipoles.  For both sources the radiation is elliptically polarized when observed at 
some angle away from the orbital plane as given by Eq. 5.  For radiation from 
planar undulators, however, the polarization is always linear.  The polarization 
direction, which is in the horizontal plane when observed from that plane, rotates 
in a complicated way at other directions of observation.  A comprehensive 
analysis of the polarization from undulators has been carried out by Kitamura22.  
The linear polarization of the undulator radiation is due to the symmetry of the 
electron trajectory within each period.  The polarization can in fact be controlled 
by a deliberate breaking of this symmetry.  Circularly polarized radiation can be 
produced by a helical undulator, in which the series of dipole magnets is 
arranged each rotated by a fixed angle with respect to the previous one.  For a  
variable polarization capability, one can use a pair of planar undulators oriented 
at right angles to each other.  The amplitude of the radiation from these so-
called crossed undulators is a linear superposition of two parts, one linearly 
polarized along the x direction and another linearly polarized along the y 
direction, x and y being orthogonal to the electron beam direction.  By varying 
the relative phase of the two amplitudes by means of a variable-field magnet 
between the undulators, it is possible to modulate the polarization in an arbitrary 
way.  The polarization can be linear and switched between two mutually 
perpendicular directions, or it can be switched between left and right circularly 
polarized.  For this device to work, it is necessary to use a monochromator with 
a sufficiently small band-pass, so that the wave trains from the two undulators 
are stretched and overlap.  Also the angular divergence of the electron beam 
should be sufficiently small or the fluctuation in relative phase will limit the 
achievable degree of polarization.  A planar undulator whose pole boundaries 
are tilted away from a right angle with respect to the axial direction can be used 
as a helical undulator if the electron trajectory lies a certain distance above or 
below the mid-plane of the device. 
 
Transverse Spatial Coherence 
 
As shown by Kim23 and utilized in the brightness formulae given above, in wave 
optics the phase-space area of a radiation beam is given by the ratio of flux (F0) 
to brightness (B0).  A diffraction limited photon beam (no electron size or angular 
divergence contribution) occupies the minimum possible phase-space area.  
From Eqs. 32-37 this area is 
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Thus, the phase space occupied by a single Gaussian mode radiation beam is 
(λ/2)2, and such a beam is referred to as completely transversely coherent.  It 
then follows that the transversely coherent flux of a radiation beam is 
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and the degree of transverse spatial coherence is 
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Conversely, the number of Gaussian modes occupied by a beam is 
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Transverse spatial coherence is the quantity which determines the throughput of 
phase sensitive devices such as Fresnel zone plates used for x-ray microscopy. 
 
Fourth Generation Sources. 
 
For completion we discuss fourth generation sources at least conceptually.  
These sources are of even higher brightness than the devices discussed in the 
preceeding text and are based on multi-particle coherence which can be 
understood as follows.  In Fig. 1 the electric field induced by one electron, and 
hence the intensity, is proportional to the charge on an electron.  If N electrons 
are circulating together in a storage ring, the emission is simply proportional to N 
times the emission of a single electron.  However, when the electrons circulating 
in the storage ring, or passing through an insertion device, are close together 
compared to the wavelength of the light being emitted24, the electric fields add 
coherently, so that the intensity scales like N2.  The electrons can be forced to 
micro-bunch when they are in the presence of the electric field of a 
superimposed light beam, and a magnetic field.  The degree of multiparticle 
enhancement depends on the degree to which the microbunching occurs.  In 
these devices a light beam either from a seed laser, or from back reflection of 
light spontaneously emitted from the same electrons in a previous pass through 
the device, causes the electrons to microbunch.  New, even brighter sources of 
VUV radiation are being planned based on these principles25. 
 
Conclusion 
 
We have attempted to compile the formulae needed to calculate the flux, 
brightness, polarization (linear and circular) and power produced by the three 
standard storage ring synchrotron radiation sources: bending magnets, wigglers 
and undulators.  Where necessary, these formulae have contained reference to 



  

the emittance (ε) of the electron beam, as well as to the electron beam size (σ) 
and its divergence (σ').  For all three types of sources, the source phase space 
area, i.e. the spatial and angular extent of the effective (real) source, is a 
convolution of its electron and photon components.  For a more detailed 
description of these properties, see Ref. 26 and references therein. 
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Figure Captions 

 
Fig. 1.  Conceptual representation of the radiation pattern from a charged 
particle undergoing circular acceleration at (a) non-relativistic and (b) relativistic 
velocities. 
Fig. 2.  Illustration of the derivation of the spectrum emitted by a charged particle 
in a storage ring. 
Fig. 3.  Universal synchrotron radiation output curve. 
Fig. 4.  Plot of the normalized vertical opening angle ψγσ  for bending magnet 
radiation. 
Fig. 5.  Normalized intensities of horizontal and vertical polarization components, 
as functions of the vertical observation angle for different photon energies. 
Fig. 6.  Pc vs. γψ  vs ω/ωc for E=0.8 GeV, ρ=1.91m. 
Fig. 7.  Vertical angle dependence of bending magnet power, F(γψ ) vs. γψ . 
Fig. 8.  Schematic of an insertion device. 
Fig. 9.  Conceptual representation of the electric fields emitted as a function of 
time by an electron in (a) a wiggler, and (b) an undulator, with the corresponding 
spectra. 
Fig. 10. Spectral output and angular distribution of the emission from the NSLS 
In-Vacuum UNdulator (IVUN) for K=0.75. (a) spectral output in the forward 
direction, with (solid line) and without (dotted line) the effect of electron beam 
emittance; (b) angle-integrated spectral output with (solid line) and without (faint 
solid line) the effect of electron beam emittance, and the decomposition into 
harmonics (n=1,2,3,4) (dotted lines); (c) angular distribution of the first three 
harmonics (n=1,2,3), with and without the effect of electron beam emittance.  
The emittance of the NSLS X-ray ring is 94nm horizontal and 0.1nm vertical. 
  


