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Abstract 

An exactly solvable model of longitudinal bunched beam stability is used 

to test the convergence of the basis expansion formalism. It is found that 
basis expansions can predict instability for equations that have no unstable 
solutions. 

1 Introduction 

The basis expansion technique[l, 2, 3, 4, 51 has been used for many years to find 
approximate eigenmodes in bunched .beam instability problems. In general terms, 
one reduces the linearized Vlasov equ’ation to an eigenvalue problem in one spatial 
(7) and one momentum (w) variable, 

In equation (1) X is the eigenvalue, f(r, v) is its eigenfunction, and L,, is a linear 
integro-differential operator. For all but the simplest cases [6, 7, 8, 91 no exact 
solutions are known. The basis expansion technique involves choosing a, complete 
set of basis functions gn(r, v) and a weighting function W(T, v) which satisfy an 
ort hogonality relation 

s gp, w)g&-, w)W(r, w)ddw = Sk. (2) 

In equation (2) the integral is over the domain where W + 0, the * represents 
complex conjugate, the index n represents an enumeration of the basis functions, 
and 8; is the Kronecker delta. To proceed one uses completeness to write 



where the a,s are unknown coefficients. 

One proceeds by multiplying equation (1) by g;(r) v)W(r, v)d-rdv and integrates 
to obtain m 

Au,, = c &,,arn, (4 
m=l 

where the matrix elements T,,, depend on the basis chosen, the impedance, etc. 
If L,, is sufficiently well behaved the technique seems to be exact to this point. In 
practical applications the infinite matrix equation is intractable, the sum is trun- 
cated at some value N, and eigenmodes are obtained using numerical techniques[3]. 
There is ,circumstantial evidence[9] that truncating the sum can lead to grossly in- 
correct eigenvalues even for large N. 

The purpose of this paper is to examine the expansion technique using a very 

simple, exactly solvable model of bunched beam stability. The model is quite naive, 
but seems to incorporate the fundamental elements of a longitudinal instability 
calculation. It is found that one must be careful in drawing conclusions from the 
basis expansion results. 

2 Longitudinal instability model 

The model assumes a waterbag distribution in a square well longitudinal potential 
with an impedance 2 = R - iwL. The particles undergo perfect reflection at the 
edges of the bunch which makes the rf restoring force a boundary condition[ll, 12, 

8, 9, 101. 

Let 0 denote machine azimuth, ws be the angular revolution frequency of a syn- 
chronous particle, and r be arrival time relative to the head of the bunch. Using 0 
as the time-like variable the Vlasov equation away from the reflective boundaries 
is, 

(5) 

In equation (5): f = f(0, r, r~), I = I(r, 0) = Q J dvf(8, T, ZJ), 2, = dr/d6, and 

rl 

K = 27rwoP2( Eo/4) ’ 

with slip factor 7. The synchronous particle’s energy, charge, and velocity are 

Es, q, and PC, respectively. For a waterbag distribution below the wave-breaking 
threshold the solution to the Vlasov equation is of the form: 



where f. is a constant and H(x) is the heaviside function with 

H(x) = { 
1, if 2 > 0; 
0, otherwise. (7) 

Substituting equation (6) into (5) results in differential equations for V+ and v_, 

8% dV* 
dB i-vid7. = F, 

with 

For perfect reflection at the r bound.aries v+(B,O) + v-(0,0) = 0 and 11+(6,q,) + 

v_ (0, ebb) = 0. The current is proportional to v+ - v_ and the solution is exact to 
this point. 

To obtain an exactly solvable model neglect the effect of R on the unperturbed 
distribution setting 

vk = fG + &k(r) exp( -i&19). 

Setting &J+(T) + &v_(r) = D(r) and lkeeping first order terms yields a single equa- 
tion for D with 

Q”D = -C(C -- 2V)$ (S) 

where u - iV = -qlcwofo(R - iw&). For perfect re:flection at r = 0 and r = rb 
the boundary conditions are D(0) = o(rb) = 0. To solve (8) notice that 

D(r) = exp(X+T) - exp( X3). 

Inserting this expression yields a quadratic equation for A*, 

The boundary condition at rb gives A+ - A_ = ‘hik/q, with k # 0 an integer. The 

eigenvalue satisfies 

Q; = fi(c _ 2vj) 

and the eigenvector is 

Dk(T) = Sin(km/q) eXp (‘$5) . 

(9) 

(10) 



, 

The functions & for k = 1,2,. . . form a complete set on (0, 7r), so no eigenmodes 

have been missed. The right hand side of (9) is positive as long as 6 > 2V, 
so resistance alone cannot cause instability. Additionally, reactance alone cannot 
cause instability, since no unperturbed distribution exists unless 6 > 4V. To prove 
this consider the single particle Hamilonian which is given by 

H = v2/2 + KLI + boundary terms. 

For a stable unperturbed distribution the net pressure from the boundaries must be 
confining or zero. In particular H 2 0 for 2, = 6. For H = 0, C2 = -2~L1 = 4GV, 
which implies 6 > 2V and a stable system. This is in agreement with [7] which 

considers the case of a pure inductance with a parabolic line density confined by 
a linear rf force. For such a system any self consistent unperturbed distribution is 

stable. 

While the reader may disagree with the physical behavior, the fact that equations 

(9) and (10) P re resent the complete solution of (8) is inescapable. In fact, every- 

thing before equation (8) may be viewed as purely motivational without affecting 
the main results. 

3 Testing basis expansions 

Consider equation (8) with G(G - 2V) > 0. Let z = .~.r/rb, u2 = Q2$/7r2G(G - 2V), 
and R = Urb/‘i~(fi - 2V). The equation becomes 

d2D 
v2D = -- 

dx2 
+ 2R$ (11) 

with boundary conditions D(0) = D(r) = 0. In th ese variables the exact eigenvec- 

tors and eigenvalues are 

Dk(x) = sin(kx) exp(&x), (12) 

vk” = k2 + ii”. (13) 

Let the expansion functions be gn(x) = sin(nx) with W = 2/n for 0 < x < rr. The 

eigenvalue in equation (4) is X = Q’ and the matrix element is 

8&n 
T 71,m = nmbz + 

7r(n2 - m2) 
odd(n - m), (14 

where odd(n - m) = 1 if n - m is odd, and odd(n - m) = 0 otherwise. In 
particular, when n = m the term proportional to the reisistance is zero and there 
is no frequency shift in the weak coupling limit. This is consistent with the exact 

solution since the tune shift is O(k”). 



A computer code was used to find solutions to 

N 

Q2u, := 1 Tt,,am, (15) 

for various values of N and k The only sophisticated part of the code is the eigen- 
value solver[l3] h h w ic is a well tested. standard routine. Figure 1 shows the values 
of Q as a function fi for N = 2 and predicts instability for fi 2 1. Setting N = 9 
gives Figure 2. The lowest frequency mode in Figure 2 is stable, and appears to 
be the case for all odd N. Also notice that large v,alues of Q go unstable first. 
This also seems to be generic. Setting k + -R has no effect on the eigenvalue 
spectrum. 
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Figure 1: Real and imaginary parts of Q versus fi for IV = 2. The solid li-nes are the 
real part of Q and the distance between the points and solid line is the imaginary 
part of Q for the unstable mode. 
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Figure 2: Real and imaginary parts of Q versus R for N = 9. The solid lines are the 
real part of Q and the distance between the points and solid line is the imaginary 
part of Q for the unstable mode. 

As the number of modes increases the threshold value of fi for coupling between the 
lowest order modes continues to increase. Figure 3 shows the lowest 10 modes for 
N = 100. The expansion technique predicts that lowest order modes go unstable 
for fi < 5, while the exact solution proves that the system is absolutely stable. 

Additionally, the threshold value of fi for the onset of unstable behavior without 
regard to mode varies only slightly with N. The threshold values of k are 0.90, 
0.95, and 0.95 for N = 2, 9, and 100, respectively. With basis expansions alone 
could one show that equation (11) has no unstable solutions? 

At the workshop it was suggested that the lack of convergence in the basis expansion 
technique might be due to the wide bandwidth of the model impedance. To test 
this hypothesis equation (11) is modified to read 

v2D = - 
d2D dD( x’) 
dz2 + 24 S(x - x’)dxf7, 

0 

(16) 

where S(x) is a smoothing function. Since convolution commutes with differentia- 
tion this is completely equivalent to assuming a smoothed wake potential instead 
of a delta funtion for the resistive term. To proceed consider the Fourier series 
expansion of the smoothing function 

S(x) = F S,cos(lcz). (17) 
n=O 



This function is periodic with S(z) =z S(X + 27r) but since the domain Iof D(z) is 
[0, ~1, which is half th e p eriod of S(z), the value of the convolution within [O,r] 

will exactly agree with the value obtained using the bounded support smoothing 
function Sb(5) = H(a: + 7r)H(r - 2)S(z). 

Inserting equation (17) into equation (16) and proceeding as before one obtains, 

4knm 
T 71,m = nmb~ + --odd(n - m)(S, + Sm). 

(n” .- m2) (1s) 

For a delta function S, = l/r for n 2 1 and equation (18) reduces to equation 
(14). To test the effect of smoothing set S, = exp(-cr2n2/2)/r for n 2 1. This is 
the periodic extension of a Gaussian with a root mea:n square width u. Note that 
since S’s does not enter equation (18) one is free to assume that S(r) = 0. Figure 

4 shows the lowest 10 modes for N := 100 with c = 0.1. The threshold value of 

k for the lowest order mode is reduced by smoothing the resistive term. However, 
the threshold value of fi without regard to mode is increased from 0.95 to 3.8. 
Reducing 0 to 0.05 increases this to 4.75. With r~ = 0.02 the threshold value of fi 
is 4.55. 
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Figure 3: Lowest 10 eigenvalues versus k for N = 100. The solid lines are the real 
part of Q and the distance between the points and solid line is the imag;inary part 

of Q for the unstable mode. 
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Figure 4: Lowest 11 eigenvalues versus fi usin, c a Gaussian smoothing function 

for N = 100 and u = 0.1. The solid lines are the real part of Q and the distance 

between the points and solid line is the imaginary part of Q for the unstable mode. 

4 Conclusions 

An exactly solvable model of longitudinal bunched beam stability including both 
resistance and inductance was presented and solved within the context of first order 

pertubation theory. It was found that the stability of the system depended only on 
the inductance. Including the effect of resistance on the unperturbed distribution 
(neglected here) may change th is result. However, as discussed at the workshop, it 

may be that longitudinal microwave instability in bunched beams is an inherently 
nonlinear phenomena. 

Regardless of the model’s physical implications, the eigenvalue equation (11) seems 

quite reasonable and the basis expansion technique was applied to it. As is clear 
from Figures 1 through 3 the basis expansion technique predicts instability where 
none exists. Applying a spectral filter to the resistive term in the eigenvalue prob- 
lem increased the stability threshold by as much as a factor of 4. The general 
application of this technique requires a better understanding of the mathematics. 
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