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ABSTRACT 

This paper is about the parallttl implementation of a high-resolution, spectral element, 
primitive equation model of ;a homogeneous equatorial ocean. The present work shows 
that the high-order domain decomposition -methods can be efficiently implemented in a 
massively parallel computing envnronment to solve large-scale CFD problems, such as the 
general circulation of the ocean. 

1. INTRODUCTION 

In the past decade or so, research on the spectral element method has made important 
progress in perfecting this state-of-the-art numerical method [4,10,11]. More recently, 
the spectral element method ha:; shown encouraging potential in oceanic applications 

[5,%7,8,9]. 
The equatorial ocean is well known for the richness in the structure of its currents. 

Equatorial currents exist not only in the upper ocean, but in the deep ocean as well [2,3]. 
These equatorial currents might, in some way, interact with the high-frequency, small- 
scale, baroclinic waves which, in turn, influence the momentum and heat budget of the 
tropical ocean. 

The present work is about the implementation and results of a spectral element, high- 
resolution, three-dimensional ocean model which, in particular, is capable of resolving 
bot,h the horizontal and the vertical structures of the low-latitude western boundary pro- 
cesses. The current version of th#fb model is driven solely by wind stress and ignores the 
dynamical effects of stratification. This model is designed to study the effect of wind in the 
formation and variation of important, meso-to-small scale equatorial ocean phenomenon, 
such as eddies, low-latitude western boundary currents, and vertically alternating equa- 
torial zonal jets. The high efficiency of this model is based on an optimized coupling 
between the numerical algorithm and the computer architecture (algorithm-architecture). 
performance is further enhanced by the spectral element tensor-product factorization and 
spectral element parailelism. 
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2. GOVERNING EQUATIONS 

With the hydrostatic approximation, the primitive equation model in spherical coor- 
dhates for a homogeneous ocean contains the following equations: 
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and X is longitude, C#J latitude, and r radial distance; u, v, and w are the velocity compo- 
nents in the A, r#~, and T directions, respectively; p is the pressure; AH and A,, are eddy 
viscosities. 

No-normal flow, no-slide boundary conditions are applied to all lateral boundaries. 
the sea surface, we assume the rigid-lid boundary condition. The present version of 
model is solely driven by the surface wind stress. 
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3. DISCRETIZATION SCHEMES AND SOLVERS 

The computational domain, 52, of the present model is the part of the equatorial 
Atlantic Ocean between 15”N and 15’S with idealized north-south meridional boundaries. 
s2 is decomposed into K subdomains (spectral elements), &. A strip of refined spectral 
elements is embedded in the western boundary region in order to resolve the narrow, 
strongly sheared, low-latitude western boundary currents and the retroflection eddies. 
The exponential convergence rate of the spectral element method lets us achieve this 
objective with much less computational cost than that entailed by low-order numerical 
methods. 

The basis functions used in the present model are the the Gauss-Lobatto-Legendre 
polynomials. A three dimensional basis set {I/+,,} is constructed as: 

?knn(J, 7170 = M)kl(rl)MC) l,m,n E {0,1,2, ...N}3 
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Here the same elemental degree-of-freedom. (N) is used in all three spatial dimensions 
for simplicity. This does not affi:ct the generality of the method, and in actual imple- 
mentations different elemental degrees-of-freedom can be used in each spatial direction as 
needed. 

With well distributed interpolation points on R”, it can be proved that {$,“} is complete 
(when N + co) a,nd orthogonal. Th.erefore, if Me is the subspace spanned by {+!$} E X1, 
then there is a projection II,, such that ‘v”u”(x 1 x E R”) E FL1 

lFI,~~u”(:x)] := u;[J(x)] = $&J<(x)] E Me (0.1) 

where ui is the numerical appro>:imation of ue. 
Then, it follows that there is a projection II, such that V’u(x 1 x E R) E X1 

e=l 

where uh is the numerical approxima,tion of u by the piecewise polynomials, and 

where Nd is the dimension of Ma’ and Ama is the maximum size of the subdomains 0”. 
Let the solutions of the primitive equations at time t and the test functions on each 

subdomain R, be expanded as YP(x, y, z, t>l = z$~(~)@~~[((z, y, z), ~(z, y, z), <(z, y, z)], 
where z&(t) is the value of the function u at the collocation point (zi, yj, zk) E R, at 
time t. The relationship between the global coordinates (x,y,z) and the local coordinates 
(I, 77, C) is given by the isoparametric mapping. 

By using the same variational procedurses as those in [6,7], i.e., all the integrations 
are evaluated by the Gauss-Lobatto quadrature scheme, which is an exact formula for 
(2N - l)th order polynomials, the spatially discretized formulae for the primitive equa- 
tions can be obtained. In particular, the i,soparametric spectral element discretization 
formulae for the horizontal momentum equations of the present primitive equation model 
are virtually identical as those in [Ei, 71. One advantage of using the Gauss-Lobatto- 
Legendi-e polynomials as basis functions is that we only have to deal with one set of grid 
points for both interpolating .the solutions and evaluating the integrals. 

The discretized incompressib:i My condition and the hydrostatic condition have the 
following format: 

where [D”] is the matrix generaled by applying variational procedures to the vertical 
differentiation operator; [w] is the vector r’epresenting the unknown at the collocation 

points, and [g] is a vector whose c,omponents are known. 
To obtain the solution for the vertical velocity, w, we need to solve a matrix problem 

of the above format. It can be done by using either matrix iteration methods or direct 
matrix inversion. We have chasm to use the latter for the present model with regular 
geometries. It is especially eff?cient when the vertical grains of the spectral element mesh 



are parallel to the z axis, since the dimension of the matrix to be inverted is the same as 
the number of levels in the vertical direction. 

The Poisson’s equation for the pressure term. however, has to be solved via a spectral 
element iterative solver. AA preconditioned conjugate gradient iterative solver is used in 
the present model. 

The spectral element primitive equation model has two ways to achieve better numer- 
ical precision, i.e., by increasing the dimensions of the subspaces, N3, and/or increasing 
the number of macro-elements, K. It can be very flexible and the optimum choice for these 
two parameters depends on each individual problem to be solved. 

The time marching scheme for the hyperbolic equations of the present model is the 3’d 
order Adams-Bashforth scheme. This scheme has proven to be efficient in high Reynolds 
number, high resolution simulations, especially in a massively parallel computing envi- 
ronment [7]. In fact, except in the upper range of eddy viscosity (diffusion) for oceanic 
applications, it is likely to be more efficient to use a fully-explicit scheme because it results 
in diagonal stiffness matrices for the hyperbolic equations. 

4. PARALLEL IMPLEMENTATION AND RESULTS 

An important aspect which greatly enhances the computational efficiency of the spec- 
tral element method is the natural fit of this method to parallel computing. The main 
difference between the spectral element method and the spectral multi-domain method 
is that the Co and C’ boundary conditions at the interface of the elements have to be 
enforced explicitly in the latter. By contrast, the spectral element method uses the vari- 
ational principle to guarantee Co and C’ (weakly) continuity at the interface, therefore, 
parallel algorithms can be implemented conveniently [4,7,8]. 

The spectral element primitive equation ocean model is parallelized to run efficiently 
on the Connection Machine Model CM5. In order to avoid unnecessary communication 
among processing nodes, which is of first order importance in a parallel implementation 
on a distributed memory, massively parallel architecture, a data mapping scheme was 
created so that all the information related to a given spectral element is collected in the 
memory of a single processor (Figure 1). Prior to assembling the global stiffness-matrices, 
only data related to a given spectral element are used to create the local matrices of 
that spectral element. At this stage, all computations are carried out at the local level, 
therefore, there is no communication among neighboring processors while assembling local 
(elemental) matrices. 

The only communication which cannot be avoided is during assembling the global 
stiffness matrix. However, since the spectral elements are of high order, most of the 
costly operations are at the elemental level, which can be executed in parallel. For the 
same reason, the communication cost due to the information exchange among neighboring 
processors for the spectral element model is only a small fraction of the total cost and 
it is much smaller than that for the h-type finite element model partially because that 
many fewer redundant node1 values which are shared by more than one elements have to 
be stored. 

The technique of partial summation provides a significant relief in cost for the stiffness- 
matrix/vector product, [A] [ ] u , and the operation count is reduced to O(KN4). However, 
[A][u] is still the most expensive part of the computation of the present spectral element 
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primitive ocean model. With massively para,llel processing, we have obtained further relief 
for this problem. 

After applying tensor-product factorization, the general expression of [A][,u] = [g] 

resulting from the spectral element discretization is of the form 
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Figure 1. Flow diagra.m of the parallel execution of a typical spectral element matrix 
operation. 

The direct stiffness summatiorii in the last equation can be split into three steps, each of 

which admits concurrency. “Forming” is the lirst step, when J$!!r C;,, C,“=, Bh,, Cf”“=, A& 
ZL~,~,$ is calculated simultaneously across K virtual processors. “Gathering” and “Redis- 
tributing” are the second and the third steps, respectively, during which contributions of 



neighboring spectral elements are summed (gathering) and then given back to the cor- 
responding nodal points (redistributing). Since the message exchange at the linkages of 
macro-elements, which are surfaces for the three dimensional model (Figure 2), is syn- 

chronized for all elements on the entire surface, it can provide a speedup of Kg. The cost 
of steps two and three is generally much smaller than that of step one, because the latter 
handles higher spatial dimensions. As a result, the number of clock cycles required to 
calculate the direct stiffness summation will then be proportional to KN4/Q, where Q is 
the speedup. 

Parallel Direct Stiffness Summation For [A][X] 

Figure 2. Symbolic diagram of direct stiffness summation with the surface-based 
message exchange. 

In the parallel implementation of the present spectral element model on the CM5, the 
number of virtual processors always equals to the number of spectral elements. There- 
fore, we can use “equivalent speedup” = (K * Tl)/T K and “equivalent efficiency” = Ti /TK 

to measure the parallel performance of the spectral element primitive equation model, 
where TK is the CM5 cpu time per time step with K spectral elements. Since on a se- 
rial computer, the computational cost of the spectral element primitive ocean model is 
proportional to the number of spectral elements, K t Tl is roughly how much time it 
would take to execute one time step if the CM5 had only one processor. Figure 3 shows 
that with a fixed number of physical processors, the performance of the spectral element 
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primitive equation model scales yiery well until the number of spectral elements becomes 
so large that the memory in the CM5 partition is saturated. The excellent scalability of 
the model recovers when the size of the CM5 partition is increased. 
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Figure 3. Parallel performance measure on a CM5 partition with 256 processors. N = 6. 

Figure 4 is a snapshot of a meri.dional transection of the zonal current from a simulation 
run of the model driven by the climatological wind-stress over the Atlantic. The model 
has 67 and 2989 spectral element interpolation points in the vertical and the horizontal 
directions, respectively. The high computation efficiency of the spectral element primitive 
equation model allows t,he model to capture the meso-small scale oceanic processes much 
more efficiently than low-order numerical models. This is the first time that the north 
and south intermediate countercurrents and the south equatorial intermediate current 
are identified by a numerical ocean model. Details of the numerical simulation shall be 
published in a separate paper. 
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Figure 4. Section of the zonal current along 39.2”W on day 421 (contour interval=0.02 
m/s). Currents in the darkly shaded areas are westward. 
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