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Abstract

The Electron cooling beam has both coherent and
incoherent effects to the circulating ion beam. The
incoherent longitudinal cooling could reduce the ion beam
energy spread and hence cause ‘over-cooling’ of the ion
beam. Depending on the beam densities and cooling
length, the coherent interaction between the ion and
electron beam could either damp or anti-damp the ion
coherent motions. Using the tracking codes, TRANFT,
the threshold for ‘over-cooling’ has been found and
compared with theoretical estimation. The transverse
coherent effect of electron cooling has been implemented
into the codes and its effect for the bunched ion beam is
shown.

INTRODUCTION

Although the major task of RHIC-II electron cooling is
to compensate the transverse emittance growth due to
IBS, the longitudinal cooling could also happen for
certain cooling schemes [1]. As a result, the energy spread
of the ion beam decreases with the cooling process and
may eventually destroy the Landau damping. Depending
on the specific impedances of the machine, either
longitudinal or transverse coherent instabilities will take
place and thus cause emittance deterioration or beam loss.
On the other hand, the electron beam itself can also
coherently interact with the ion beam and thus affect the
instability threshold and growth rate. A tracking code,
TRANFT, is used to study the coherent instability of the
RHIC ion beam with the coherent effects of the electron
cooling being taken into account. In section 2, we
describe the simulation algorithm and the impedances
used for the RHIC simulation. In section 3, the simulation
results are shown and the energy spread threshold for the
instability is compared with analytic formula derived from
the coasting beam dispersion relation. For the current ions
per bunch, when the chromaticity is set to a slightly
positive value at the top energy, the longitudinal
instability happens before the transverse instability as the
energy spread decreasing. However this is not true for a
longer bunch with the same longitudinal phase space
density. For fixed bunch length and increasing particle
numbers, the transverse head-tail instability happens
before the longitudinal instability but its growth can be
suppressed by the coherent damping effect of the electron
beam, which is shown in section 4. We make conclusion
in section 3.

*Work supported by U.S.DOE under contract DE-AC02-98CH1-886
" sawang@bnl.gov

TRACKING CODES DESCRIPTION

The FORTRAN program TRANFT simulates coherent
instability in circular machine by using FFT algorithms.
Each ion bunch is represented by10*~ 10°macro particles,
which are updated every turn according to the coherent
kicks due to the wake field and the electron beam [2]. The
kicks due to Wakefield are calculated in frequency
domain by multiplying the Fourier component of the
current with the impedances. The transverse impedances
include the resistive wall, space charge, abort kicker,
bellows and bpms [3]. The longitudinal impedances
include the resistive wall, space charge and resonant
impedance which give the measured Z./n=3jQ over the

beam spectrum [4]. The longitudinal and transverse
impedance are plotted in Figure 1. For non-magnetized
electron cooling, the transverse kick due to the electron
cooling beam is given in [5].
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Figurel(a) RHIC Transverse Impedance. The dot curves
are for step form bpm impedances. (b) RHIC Longitudinal
Impedance over harmonic Z, /n . The Gaussian curves in

both graphs roughly show the range of beam spectrum.



SIMULATION RESULTS

Since the rf voltage and harmonic number were kept the
same for all simulations, the momentum spread was
always proportional to the bunch length. In order to
investigate the momentum spread threshold of
overcooling, the initial bunch length was gradually
reduced from its current operational value to the point
where either longitudinal or transverse instability was
observed. Table 1 shows the beam parameters we used for

the simulation. About10’ macro-particles were tracked in
Table 1: Parameters for RHIC Instability Simulation

Beam Energy y 100
Beam Particle Au™
RMS Emittance &, (7 mm - mrad ) 4.2
Bunch Population 10°
RF Voltage (MV) 3
RF Harmonic number 2520
Chromaticity &, 2

the simulation. The initial longitudinal distribution was
parabolic and the initial rf voltage was linear. The beam
was adiabatically matched to a sinusoidal rf voltage
within 1000 turns. As shown in Figure 2a, for initial
&/ p<1.4x107 the longitudinal emittance started to

grow rapidly. After a few hundreds turns, the momentum
spread increased well above the stability threshold and the
growth was suppressed as the beam reached to its new
equilibrium. Figure 2b shows the longitudinal beam
profile after 5000 turns. No transverse instabilities were

observed for 10°ions per bunchand &, =2 . Since the
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Figure 2 (a) Momentum spread evolution. The decreasing
before 1000 turn is due to the mismatch of the
iongitudinal phase space; (b) Longitudinal beam profiles
after 5000 turns.

synchrotron oscillation was slower than the longitudinal
instability growth rate, the dispersion relation for a
coasting beam should be able to estimate the instability
threshold. The theoretical prediction is given by the Keil-
Schnell criteria.
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Comparing Equation 1 with the simulation results, we see
that the agreement is within 10%. Because of the non-
linear component of the rf voltage and the wake field, the
transverse higher order head-tail modes were actually
landau damped by the synchrotron tune spread. As the
number of particle inside the bunch increasing, the landau
damping would eventually cease and for weak coupling
and short bunch, the threshold can be estimated by the
following dispersion relation {7].

=1.5x107* ¢y

r - {4 -
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, where 9=0, +i0,=(Q+ , )/a;0 is the coherent tune

shift and A, =eCIav(2Ml M’TZ(ZU/ lggEO)"‘ /ZEa)y . The effective
impedance Z o is defined as
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Figure 3 (a) The transverse coherence evolution for head-
tail mode. The vertical axis is the coherence as defined in
[2]. The red green blue and purple curve are for bunch
population of 10, 8x10°, 5x10° and 4x10° respectively.
(b) A snapshot of the transverse displacement along the
bunch. The red and green curves are for 8x10° and 5x10°
ions per bunch.
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