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ON THE DEFINITION OF THE NUMBER OF TEMPORAL MODES 
 IN THE SASE OUTPUT* 

S. Krinsky#, BNL, Upton, NY 11973, USA 
Abstract 

The number of temporal modes in the SASE output can 
be defined in several ways: as the ratio of the phase space 
area occupied by the radiation to the minimum area 
allowed by the uncertainty principle; in terms of the 
fluctuation of the pulse energy; and in terms of the Wigner 
function. Here, we discuss these different definitions and 
show their equivalence for SASE from a Gaussian 
electron bunch, in the linear regime before saturation.  

INTRODUCTION 
The self-amplified spontaneous-emission free-electron 

laser (SASE FEL) starts up from the shot noise in the 
electron beam [1,2].  SASE power increases exponentially 
as the electrons and radiation co-propagate along the 
undulator, the exponential gain resulting from a favorable 
instability build-up between the electron density 
modulation at the resonant wavelength and the emitted 
radiation [3-5].  The temporal behavior of the system is 
that of a narrow-band amplifier with a broadband Poisson 
seed. Before saturation the output is a Gaussian random 
process and the radiated field is chaotic, quasi-
monochromatic, polarized light.  Near saturation, the 
transverse behavior of the output is dominated by an 
intense, single spatial mode.   

Ignoring the transverse dependence, the radiated 
electric field can be expressed in the form 

          ( ) ( ) ( )tiziktzAtzE rr ω−= exp,, ,                    (1) 
where z represents the location along the undulator at 
which the SASE is observed and t represents the temporal 
position in the radiation pulse.  For an undulator with 
period uu k/2πλ =  and magnetic field strength parameter 
K, the resonant frequency is 
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The SASE field before saturation is the superposition of 
many electromagnetic wave packets emitted from 
randomly distributed, individual electrons [1,2].   

We suppose the electron bunch to have a Gaussian 
average density profile,  
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where τσ  is the rms electron bunch duration.  We 
consider the time dependence of the SASE amplitude as 
observed at a fixed position z.  Suppressing the 
dependence on z, we write the complex, slowly varying 
amplitude in the form 
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The arrival time jτ  of the thj  electron at the undulator 
entrance is randomly distributed according to the 
Gaussian distribution of Eq. (3), and  

                     κξ i+=1  with 3/1=κ .                    (5) 
It follows from Eq. (4) that the field amplitude ( )tA  is the 
sum of independent random variables, so its statistical 
properties are determined by the Central Limit theorem 
[6].  This implies that ( )tA  is a Gaussian random process. 
   A full treatment of a Gaussian electron bunch would 
take into account the dependence of the FEL gain on the 
electron density profile. Here, we ignore this dependence.  
This allows us to provide an analytic description aimed at 
illuminating certain qualitative issues. It remains as a 
challenge to future theoretical work to include the effect 
of the dependence of gain on the local density, and in 
particular to determine the temporal duration of the output 
radiation tΣ  as a function of the electron bunch 
duration, τσ . 

MODE NUMBER 
Averaging over the stochastic ensemble of arrival 

times, we determine the field correlation function  
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                                                                                         (6) 
In deriving Eq. (6), we have retained only the dominant 
contributions characterized by the absence of rapid phase 
variation.  These correspond to keeping pair-wise equal 
summation indices from the A and A* terms.  It is easily 
seen that the average of the field vanishes, ( ) .0=tA  
    The Wigner function [7] is defined by 
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From Eqs. (6) and (7), we derive 
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where 
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Note that for a long pulse, the chirp u [Eq. (9)] vanishes 
inversely proportional to the square of the pulse duration.   

Integrating the Wigner function over frequency, we 
obtain the average instantaneous intensity, 
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tΣ  is the rms radiation pulse duration.  Integrating over 
time, the average spectral intensity 
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The rms radiation bandwidth is given by 
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The phase space area occupied by the SASE radiation 
can be defined as 
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One definition of mode number, 1M , is the ratio of the 
phase space area occupied by the radiation to the 
minimum value allowed by the   uncertainty principle.  
The phase space area (13) occupied by the SASE 
radiation (see Fig. 1) is proportional to the product, 

0ωΣΣ t .  The uncertainty principle sets a lower bound of 
½ for this quantity. The number of modes in the SASE 
output can be defined as 
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A second definition of mode number [8-10], 2M , is 
given in terms of the fluctuation Wσ  of the energy W in a 
pulse. It is determined by 
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A third definition of the number of modes, 3M  can be 
given in terms of the Wigner function [7] via,           
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The quantity on the left-hand side is often used as a 
measure of the overall degree of coherence.  For a 
Gaussian random field such as the SASE field introduced 
in Eq. (4), we know that [9] 
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In this case, Eq. (15) is equivalent to the definition given 
in Eq. (16), so  
                                  32 MM = .                                  (18) 
For more general fields, where Eq. (17) does not hold, 

32 MM ≠ .  In this case, the expression in terms of the 
Wigner function given in Eq. (16) may provide a better 
definition of the number of modes.  In particular, for a 
fully coherent field with no energy fluctuation, Eq. (16) 
still holds and correctly states that there is one mode.  

   For the Gaussian random SASE field (4), using the 
Wigner function as given in (8) together with Eq. (16), we 
find that the number of modes is 
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where the coherence time is defined by [8-11] 
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Hence, for the Gaussian random SASE field, we have 
shown that the number of modes as defined in terms of 
the energy fluctuation (15) and the Wigner function  (16) 
are equal to the number of minimum area phase space 
cells occupied by the radiation.   

     
Fig. 1: Region of phase space occupied by radiation, 

rωωω −=∆ .                    

RELATION BETWEEN SASE FROM 
GAUSSIAN AND TOP-HAT BUNCHES 

    Let us introduce the scaled field amplitude ( )ta  via 
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It follows from Eqs. (4) and (20) that the scaled field ( )ta  
is the sum of independent random variables, so its 
statistical properties are determined by the Central Limit 
theorem.  Together with the expression for the correlation 
given in Eq. (6), this implies that ( )ta  is a stationary 
Gaussian random process. Therefore, all the analysis 
developed by Rice [6] and applied to SASE [9-12] for a 
uniform distribution can be used to determine the 
statistics of the scaled field ( )ta .  This in turn determines 
the statistical properties of the actual field ( )tA  emitted 
by a Gaussian bunch.   
   It is straight-forward to show that ( ) 0=ta , and it 
follows from Eqs. (6) and (21) that 
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Also, 
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The bandwidth ωσ  is related to the total radiation 
bandwidth ωΣ by 
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Recall, σ  is the SASE wave packet duration, Eq. (4), and 
3/1=κ . 

   One can also write 
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   where the spectral weight ( )Ωw  is given by 
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